THE PETTIS-STIELTJES (STOCHASTIC) INTEGRAL

by

Richard H. Shachtman

Department of Statistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 593

September 1968

This research was supported by the National Science Foundation under Grant GU-2061, at the University of Maryland, and Grant GU-2059, at the University of North Carolina at Chapel Hill.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. VECTOR MEASURES</td>
<td>2</td>
</tr>
<tr>
<td>3. THE PETTIS-STIELTJES INTEGRAL</td>
<td>6</td>
</tr>
<tr>
<td>4. THE PS-STOCHASTIC INTEGRAL: A REPRESENTATION</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1</td>
<td>23</td>
</tr>
<tr>
<td>5. OTHER PROPERTIES</td>
<td>26</td>
</tr>
<tr>
<td>6. EXAMPLES</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>32</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>34</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Various definitions for integrals of functions with values in an arbitrary Banach space X (vector-valued integrals) have been given in at least three topologies: The weak and strong topologies on X and pointwise in the scalar field topology. See, for example, [1], [4] and [5]. In each case conditions must be determined so that the integral exists as a well-defined vector in X.

The purpose of this paper is to define and exhibit some of the properties of a Stieltjes integral for vector-valued measures (functions) in the weak topology on X. As the definition is motivated by B. J. Pettis' definition of a Lebesgue integral in X, the integral will be called the Pettis-Stieltjes integral.

In Section 2, some properties of vector measures used in the analysis are mentioned. The basic definition of the Pettis-Stieltjes integral and a listing of some of the commonly indicated integral properties comprise Section 3. The main result of Section 4 is a representation for the Pettis-Stieltjes stochastic integral in the form of a generalized integration by parts formula. The latter entails the use of a duality formula and an unsymmetric Fubini theorem. In Section 5, a comparison with other stochastic integrals is noted as well as another condition for existence via the definition of a modified Stieltjes integral in the strong topology on X.

Examples are given in Section 6 and there is an appendix cataloging properties of the scalar valued modified Stieltjes integral. For the interval T in the real line, \mathbb{R}, take $-\infty < a = \inf t < \sup t = b < \infty$.

This research was supported by the National Science Foundation under Grant GU-2061, at the University of Maryland, and Grant GU-2059, at the University of North Carolina at Chapel Hill.
2. VECTOR MEASURES

This section contains some preliminary data on vector-valued measures, definitions of their variations and comparisons.

Consider the measure space \((T, \mathcal{Q})\), where \(T\) is an interval in \(\mathbb{R}\), the reals, and \(\mathcal{Q}\) is a sigma field of subsets of \(T\). Let \(\mu\) be a set function (measure) on \(\mathcal{Q}\) to the Banach space \(X\) over \(\mathbb{R}\).

DEFINITION 2.1. \(\mu : \mathcal{Q} \to X\) is strongly (weakly) countably additive if for \(\{A_n\}\) disjoint in \(\mathcal{Q}\)

\[
\mu(\bigcup_{n} A_n) = \sum_{n} \mu A_n
\]

where convergence is in the norm (weak) topology.

Three definitions for a function \(x : T \to X\) to be of bounded variation are given in Hille-Phillips, [4, p.60], and two are shown to be equivalent. Below, variation functions for the measure \(\mu\) are introduced and equivalence is extended to yet another definition from Dunford-Schwartz, [1, p.320]. The supremum is taken over all finite partitions of \(A \in \mathcal{Q}\) unless otherwise noted.

\(X^*, X^{**}\) denote the first and second dual spaces of \(X\).

DEFINITION 2.2.

i) The weak variation of \(\mu\) on \(A \in \mathcal{Q}\) with respect to \(x^* \in X^*\) is

\[
W_A(\mu, x^*) \equiv \sup_{n} \sum_{k=1}^{n} |x^*(\mu A_k)|.
\]
ii) The (total) weak variation of μ on $A \in \mathcal{Q}$ is

$$W_A(\mu) \equiv \sup\{ W_A(\mu, x^*) : \|x^*\| \leq 1 \}.$$

iii) The semi-variation of μ on $A \in \mathcal{Q}$ is

$$\|\mu\| (A) \equiv \sup \| \sum_{k=1}^{n} \alpha_k \mu A_k \|$$

where the supremum is also taken over all $|\alpha_k| \leq 1$.

iv) The variation of μ on $A \in \mathcal{Q}$ is

$$V_A(\mu) \equiv \sup \| \sum_{k=1}^{n} \mu A_k \|.$$

v) The strong variation of μ on $A \in \mathcal{Q}$ is

$$S_A(\mu) \equiv \sup \sum_{k=1}^{n} \| \mu A_k \|.$$

Proposition 2.3.

i) $V_A(\mu) \leq \|\mu\| (A) \leq W_A(\mu) \leq S_A(\mu)$

ii) $\|\mu\| (A) = \beta_1 V_A(\mu)$

$$W_A(\mu) = \beta_2 V_A(\mu), \quad \beta_1 \leq \beta_2, \quad \beta_j \in [1, 2].$$

See, also, Section 6.

Proof: Let $W_A(\mu, \alpha) \equiv \sup \sum_{k=1}^{n} |\alpha_k x^*(\mu A_k)|$ over all $|\alpha_k| \leq 1$ and $\|x^*\| \leq 1$, then $W_A(\mu, \alpha) = W_A(\mu)$

and adapting the argument in [4], get

$$\|\mu\| (A) \leq W_A(\mu, \alpha)$$
as well as $W_A(\mu) < 2V_A(\mu)$. The remainder of the inequalities are evident.

Corollary 2.4. The following are equivalent.

i) μ has finite (total) weak variation (is of weak bounded variation) on A.

ii) μ has finite semi-variation on A.

iii) μ has finite variation on A.

Moreover, the finiteness of any of the variation functions $V_T(\mu)$, $\|\mu\|(T)$ or $W_T(\mu)$ is equivalent to μ having either type of countable additivity when \mathcal{Q} is the Borel field, $\mathcal{B}(T)$.

Proposition 2.5. The statements below are equivalent for μ: $\mathcal{B}(T) \to X$:

i) μ is strongly countably additive on $\mathcal{B}(T)$.

ii) μ is weakly countably additive on $\mathcal{B}(T)$.

iii) μ is of weak bounded variation on T, for μ finite.

Statements (i) and (ii) are equivalent for arbitrary \mathcal{Q}.

Proof: (i) \iff (ii) in [4].

Let $m(\cdot) = x[\mu(\cdot)]$, $x \in X^*$.

(ii) \implies (iii): the scalar case result is known (Hahn decomposition) for $m(\cdot)$.

(iii) \implies (ii): this follows from the correspondence between Lebesgue-Stieltjes measures and non-decreasing, bounded functions on T. Let $f(\cdot) = m(\cdot, \cdot]$, then f is the difference of two such functions.

Note. There is no confusion about μ being of finite weak variation or finite (total) weak variation since they are, also, equivalent:

(iii) \implies (i) \implies $\|\mu\|(T) < \infty$, [DS, p.320], $\implies W_T(\mu) < \infty$.
Let BV(T) be the space of functions of bounded variation on T under the supremum norm

\[\|f(\cdot)\|_u = \sup_{t \in T} |f(t)|. \]

In Section 4, we will be interested in the case where the vector measure \(\mu \) is induced by a function \(x: T \rightarrow X \). \(x \) defines \(\mu \) on the field of half-open intervals by

\[\mu((a, t]] = x(t) - x(a) \]

and when \(x \) is of weak bounded variation on \(T \), i.e., the scalar function \(x^* \) defines \(\mu \) on the field of half-open intervals by

\[x^*[x(\cdot)] = g^*(\cdot) \in BV(T) \]

for all \(x^* \in X^* \), then \(\Delta g^*(\cdot) = x^*[\mu] \) is countably additive on the field and extends uniquely to \(dg^*(\cdot) \) countably additive on \(\mathcal{B}(T) \) by the correspondence mentioned in the above proof. So the vector measure \(\mu = dx \) is defined by the values \(x^*(dx) = dg^* \).

When dealing with the measure induced by a function \(x: T \rightarrow X \), we will always use \(Q = \mathcal{B}(T) \) and take the usual partitions \(\{t_{kn}\} \), \(k = 0, \ldots, n; n = 1, 2, \ldots \). All of the above remarks are valid; in particular, for \(V_A(x) \), use partitions \(\{(s_{kn}, t_{kn})\} \), for all finite collections of non-overlapping intervals. For example,

\[W_A(x, x^*) = \sup \sum_{k=1}^n |\Delta x^*[x(t_{kn})]|. \]

When \(A \) is an interval with endpoints \(c \) and \(d \), write \(W_{cd} \) or \(V_{cd} \). If \(x: T \rightarrow X = \mathbb{R} \), all of the above reduce to the ordinary variation of the function \(x \).
3. THE PETTIS-STIELTJES INTEGRAL

The basic definition is motivated by the definition of the Pettis integral, see Hille-Phillips [4, p.77], and is made possible by the following proposition, which is similar to the ordinary case. Let \(f \) be measurable with respect to \((T, \mathcal{Q})\) and we say that \(f \) is weakly integrable with respect to \(\mu \) if \(f(\cdot) \in L_1(T, \mathcal{Q}, x^*[\mu(\cdot)]) \) for all \(x^* \in \mathcal{X} \), where \(\mu \) is (weakly) countably additive on \(\mathcal{Q} \).

Proposition 3.1. Let \(\mu \) be countably additive on \(\mathcal{Q} \) and \(f \) weakly integrable with respect to \(\mu \). Then there exists \(x^{**} \in \mathcal{X}^{**} \) such that

\[
x^{**}(x^*) = \int_T f(t) x^*[\mu(dt)]
\]

for all \(x^* \in \mathcal{X}^* \).

The scalar-valued integral on the right side is the ordinary Lebesgue integral.

Proof. Let \(I(x^*) = \int_T f(t) x^*[\mu(dt)] \) for \(x^* \in \mathcal{X}^* \). \(I \) is obviously linear and

\[
W_{\alpha}(\mu, x^*) \leq \beta \|x^*\| V_{\alpha}(\mu)
\]

for some \(\beta \in [1, 2] \) by Proposition 2.3. So

\[
|I(x^*)| \leq \int_T |f(t)| W_{\alpha}(\mu, x^*) \leq \|x^*\| \beta \int_T |f(t)| V_{\alpha}(\mu) .
\]

Therefore \(I \) is bounded and, hence, in \(\mathcal{X}^{**} \).
With the above as a justification, \(x^{**} \) may be set equal to the symbol \[
\int_T f(t)\mu(dt) \in X^{**}.
\]

More precisely, for each \(f \), there is an \(x^{**}_f \in X^{**} \) which may or may not be in the image of \(X \) under the natural mapping
\[
i: X \rightarrow i(X) \subset X^{**}.
\]

If this correspondence obtains, we may define the Pettis-Stieltjes integral.

DEFINITION 3.2. The scalar-valued function \(f \) on \((T, Q)\) is Pettis-Stieltjes (PS-) integrable with respect to \(\mu: Q \rightarrow X \), a Banach space, if for all \(A \in Q \), there exists \(x_A \in X \) such that
\[
x^*(x_A) = \int_A f(t) x^*[\mu(dt)]
\]
for all \(x^* \in X^* \). By definition
\[
x_A = \text{PS-}\int_A f(t) \mu(dt) \in X
\]
and write \(f \in \text{PS}(\mu) \).

For notational purposes, we will often write
\[
<f, \mu>_A \equiv \text{PS-}\int_A f(t) \mu(dt).\]

Let \(X \) be reflexive. Then if \(\mu \) is weakly countably additive, \(f \in \text{PS}(\mu) \) if and only if \(f \) is weakly integrable with respect to \(\mu \); hence, always for \(X = L_p \) over an arbitrary measure space, \(1 < p < \infty \).
COROLLARIES 3.3.

i) The PS-integral is uniquely defined.

ii) μ must be weakly countably additive for the definition.

iii) $f_1, f_2 \in PS(\mu) \Rightarrow \alpha_1 f_1 + \alpha_2 f_2 \in PS(\mu), \quad \alpha_j \in \mathbb{R},$

$f \in PS(\mu_1), PS(\mu_2) \Rightarrow f \in PS(\beta_1 \mu_1 + \beta_2 \mu_2), \quad \beta_j \in \mathbb{R},$

and $<f, \mu> \text{ is a bilinear function for fixed } A \in \mathcal{Q}.$

iv) If $X = \mathbb{R},$ then $<f, \mu>$ reduces to the ordinary Lebesgue integral.

Proof. Use the definition and the fact that $x^*(x) = x^*(y)$ for all $x^* \in X^*$
implies $x = y.$

PROPOSITION 3.4. Let $f \in PS(\mu)$ and $\psi(A) = <f, \mu>,$ then $\psi: \mathcal{Q} \rightarrow X$
is (strongly) countably additive.

Proof. Let $\{A_n\}$ disjoint in $\mathcal{Q}.$ Then for $x^* \in X^*$

$$x^*[(\cup A_n)] = <f, x^*(\mu)>_{\cup A_n} = \sum <f, x^*(\mu)>_{A_n} = \sum x^*[(\cap A_n)].$$

So ψ is countably additive by Proposition 2.5.

REMARK. Call $\phi: \mathcal{Q} \rightarrow X$ continuous with respect to $\psi: \mathcal{Q} \rightarrow X,$ if for
all $\epsilon > 0,$ there exists $\delta > 0$ such that $||\phi(A)|| < \epsilon$ whenever $||\psi(A)|| < \delta.$

Then ψ is continuous with respect to μ; in fact, ψ is continuous with
respect to $x^*(\mu)$ for any $x^* \in X^*$:

Let $x^* \in X^*.$ If $x^*[(\cap A)] = 0$ then $\psi A = 0$ and the result follows by
[4, p.76].
PROPOSITION 3.5. Let L be a bounded, linear operator on X. If $f \in \text{PS}(\mu)$, then $f \in \text{PS}(L\mu)$ and for $A \in \mathcal{Q}$

$$L <f, \mu>_A = <f, L\mu>_A.$$

Proof. Let L^* be the adjoint of L. For $x^* \in X^*$, there is a unique $y^* \in X^*$ given by $y^* = L^*x^*$ and $y^*(\mu) = x^*(L\mu)$ is countably additive. Thus there exists

$$<f, x^*(L\mu)> = <f, y^*(\mu)> = y^*(<f, \mu>) = x^*(L<f, \mu>).$$

Hence, $<f, L\mu> = L<f, \mu>$.

REMARK. For $f \in \text{PS}(\mu)$, $\nu = <f, \mu>$ has finite variation on \mathcal{Q} but does not necessarily have finite strong variation. See Section 6.

PROPOSITION 3.6. Let $f \in \text{PS}(\mu_n)$, $n = 1, 2, \ldots$.

i) If $\mu_n \rightarrow \mu \rightarrow 0$ in weak variation then $f \in \text{PS}(\mu)$ and for $A \in \mathcal{Q}$

$$<f, \mu>_A = \lim_{n \rightarrow \infty} <f, \mu_n>_A \quad \text{(weak)}.$$

ii) $\mu_n \rightarrow \mu$ in weak variation in (i) is not sufficient.

Proof. i) μ is countably additive since

$$W_A(\mu, x^*) \leq W_A(\mu_n - \mu, x^*) + W_A(\mu_n, x^*)$$

and $f \in \text{PS}(\mu)$.

$$| <f, x^*(\mu_m - \mu_n)>_A | \leq | f | \cdot W_{\text{at}}(\mu_m - \mu_n, x^*)_A \rightarrow 0$$

as $m, n \rightarrow \infty$, so there exists a weak limit of $<f, \mu_n>$ and
\[x^*\langle f, \mu_n \rangle = \langle f, x^*(\mu_n) \rangle \rightarrow \langle f, x^*(\mu) \rangle. \]

The left side converges to \(x^*(\lim \langle f, \mu_n \rangle) \) and the right side is \(x^*(\langle f, \mu \rangle). \)

ii) Let \(\mu_n \equiv -\mu \). \(W(\mu_n, x^*) \rightarrow W(\mu, x^*) \) but \(W(\mu_n - \mu, x^*) = 2W(\mu, x^*) \not\to 0 \) and \(\langle f, x^*(\mu_n - \mu) \rangle \not\to 0. \)

PROPOSITION 3.7. Let \(f_n \in PS(\mu), n = 1, 2, \ldots \), and either of the following hold:

i) \(f_n \rightarrow f \) in \(\| \cdot \|_\mu \).

ii) \(f_n \rightarrow f \) pointwise, \(|f_n| \leq g \) weakly integrable with respect to \(\mu \).

Then for \(A \in Q \)

\[\langle f, \mu \rangle_A = \lim_{n} \langle f_n, \mu \rangle_A \quad \text{(weak)}. \]

Proof. \(f_n, f \) are bounded by an integrable function; the argument in 3.6. applies and the inequality

\[|\langle f_n - f, x^*(\mu) \rangle_A| \leq \| f_n - f \|_\mu \cdot W_A(\mu, x^*) \]

is evident.

Note that it is sufficient for the convergences and inequality in (i) and (ii) to be (weak) \(\mu - a.e. \), of course.

An acceptable strong definition implies the weak definition in much the same way that existence of the Bochner (ordinary) integral implies existence and equality of the Pettis integral. For example, using a definition in Dunford-Schwartz [1, p.323],

DEFINITION 3.8. A scalar-valued measurable function \(f \) is said to be integrable if there exists a sequence of simple functions \(\{f_n\} \) such that
i) \(f_n \to f \) \(\mu \) - a.e. and

ii) \(\{ \int_A f_n(t) \, \mu(dt) \} \) converges in norm for \(A \in \mathcal{Q} \), where

\[
\int_A f_n(t) \, \mu(dt) = \Sigma \alpha_k \mu A_k \quad \text{and} \quad \{A_k\} \text{ partitions } A.
\]

The limit in (ii) is defined to be \(\text{DS-} \int_A f(t) \, \mu(dt) \).

REMARK. The existence of the strong integral \(\text{DS-} \int_A f(t) \, \mu(dt) \) implies the existence of the (weak) Pettis-Stieltjes integral \(\text{PS-} \langle f, \mu \rangle_A \) and the integrals coincide:

\[
x^*(\int_A f_n \, d\mu) = \sum \alpha_k x^*(\mu A_k) = \int_A f_n x^*(d\mu) = \int_A f x^*(d\mu),
\]

the left side converges to \(x^*(\text{DS-} \int_A f \, d\mu) \) and the right side is \(\text{PS-} \langle f, x^*(\mu) \rangle_A \).

PROPOSITION 3.9. Let \(f, g \) be scalar-valued functions on \((T, \mathcal{Q}) \) and \(\nu(A) = \langle g, \mu \rangle_A \). Then \(f \in \text{PS}(\nu) \) if and only if \(fg \in \text{PS}(\mu) \) and for \(A \in \mathcal{Q} \)

\[
\langle f, \nu \rangle_A = \langle fg, \mu \rangle_A.
\]

Proof. Let \(f \in \text{PS}(\nu) \) and \(x^* \in X^* \). Then there exists \(\langle f, x^*(\nu) \rangle_A \) and \(\{f_n\} \) simple such that \(f_n \to f \), \(x^*(\mu) \) - a.e. and in \(L_1(T) \). (If necessary, consider the non-negative parts of \(f, g \) and \(x^*(\mu) \) and use the linearity.)

\[
f_n g \to fg \text{ a.e. and}
\]

\[
\langle f_m g - f_n g, \mu \rangle_A = \langle f_m - f_n, \nu \rangle_A.
\]

Hence \(\{f_n g\} \) is Cauchy in \(L_1(T) \) with respect to \(x^*(\mu) \) and there exists \(h^* \in L_1(T) \) such that \(f_n g \to h^* \). Consequently, \(h^* = fg \) a.e. and...
\[\langle f, x^*(\nu) \rangle_A = \langle fg, x^*(\mu) \rangle_A. \]

If \(fg \in \text{PS}(\mu) \), there exists \(\{f_n\} \) simple such that \(f_n \leq |f| \) and \(f_n \to f \) a.e. So

\[|\sup f_n, x^*(\nu)\rangle_A | \leq |f|, W_{at}(\mu, x^*) \]

and \(f \in \text{PS}(\nu) \).
In this section, consider the vector measure \(\mu \) induced by a random function \(\mathcal{X} : T \rightarrow \mathcal{X} \), where \(\mathcal{X} = \mathcal{X}(\Omega, \mathcal{F}, \mathbb{P}) \) is a Banach space of random variables over a probability space. If \(\mathcal{X} = L_1(\Omega) \), then there exists \(E|x(t)| < \infty \) for all \(t \in T \). Recall the representation for the dual space of \(L_1(\Omega) \): given \(x(t) \in L_1(\Omega) \) and \(x^* \in L_1^*(\Omega) \), there exists \(\xi^* \in L_\infty(\Omega) \) such that

\[
x^*[x(t)] = E[x(t)\xi^*].
\]

The general definition for the PS-integral becomes in this case,

DEFINITION 4.1. The scalar-valued function \(f \) on \((T, \mathcal{Q}) \) is PS-integrable with respect to the random function \(x = \{x(t): t \in T\} \) with values in \(L_1(\Omega) \), if for all \(A \in \mathcal{Q} \), there exists \(x_A \in L_1(\Omega) \) such that

\[
E[x_A\xi^*] = \int_A f(t) \, dE[x(t)\xi^*]
\]

for all \(\xi^* \in L_\infty(\Omega) \). By definition

\[
x_A = \text{PS-} \int_A f(t) \, dx(t) \in L_1(\Omega).
\]

To have the induced measure \(\mu \) be countably additive, it suffices to restrict the scalar function \(g^*(\cdot) \equiv E[x(\cdot)\xi^*] \) to be in \(BV(T) \), for all \(\xi^* \in L_\infty(\Omega) \). Make this assumption in the sequel.

The above is a definition of a stochastic integral in the weak topology of \(\mathcal{X} = L_1(\Omega) \). We will also need another stochastic integral defined point-wise in the scalar topology.
Let x and y be random functions on (T, \mathcal{Q}) to $X(\Omega, F, \mathbb{P})$.

DEFINITION 4.2. The sample path stochastic integral of y with respect to x over $A \in \mathcal{Q}$ exists and is denoted by

$$\text{SP-} \int_A y(t, \cdot) \, dx(t, \cdot),$$

if the scalar-valued integrals

$$(\text{type}) - \int_A y(t, \omega) \, dx(t, \omega)$$

exists for almost all $\omega \in \Omega$, where the type may be one of the Riemann-Stieltjes (RS-) integral definitions or the Lebesgue-Stieltjes (LS-) integral.

Conditions for existence and properties of the SP-integral are discussed in [5]. In both of the above definitions, the integrals are defined on Ω a.s. with respect to \mathbb{P}.

Assume that $x : (T, \mathcal{B}(T)) \rightarrow L_1(\Omega, F, \mathbb{P})$ is a non-trivial product measurable random function and T is a finite interval.

THEOREM 4.4. For $f \in \text{BV}(T)$ and x of weak bounded variation on T, the Pettis-Stieltjes integral exists and has the representation

$$\text{PS-} \int_A f(t) \, dx(t) = \text{SP-} \int_A x(t, \cdot) \, dm_f(t) \text{ a.s.}$$

where $m_f(\cdot) \in \text{CA}(T)$ the countably additive scalar-valued set functions on $\mathcal{B}(T)$.
The integral on the right side is the sample path Lebesgue-Stieltjes type.

By the remark following Definition 3.8, the formula is true for strong integrals.

Corollary 4.5. When it exists,

\[
\int_T f(t) \, dx(t) = \int_T x(t, \cdot) \, dm_f(t).
\]

The proof of the theorem requires a few preliminary results.

Let \(BD_1(T) \) be the space of bounded, scalar-valued functions on \(T \) with at most discontinuities of the first kind. For \(f \in BD_1(T) \) and \(g \in BV(T) \), the modified Stieltjes integral \(MS-\int_T f(t) \, dg(t) \) may be defined; it is a generalization of the Riemann-Stieltjes integral and is discussed in the appendix.

Definition 4.6. Let \(\mathcal{C}(T) \) be the field of finite unions of (finite) open intervals and points in \(T \). For \(f \in BD_1(T) \), define \(m_f(\cdot) \) on \(\mathcal{C}(T) \) by

\[
m_f(C) = MS-\int_T f(t) \, dI_C(t).
\]

Let \(BA(T) \) be the space of bounded, finitely additive, scalar-valued set functions on \(T \).

Lemma 4.7.

(i) When \(f \in BD_1(T) \), \(m_f \in BA(T) \) on \(\mathcal{C}(T) \) and

\[
m_f((c, d)) = f(c^+) - f(d^-), \quad m_f(\{c\}) = f(c^-) - f(c^+).
\]
(ii) When \(f \in BV(T) \), \(m_f \in CA(T) \) on \(\mathcal{B}(T) \) and is bounded.

Proof: Let \(C \in \mathcal{C}(T) \). \(C = \bigcup_{j=1}^{m} (c_j, d_j) \cup \bigcup_{k=1}^{n} \{e_k\} \), disjoint. (i) follows from Proposition A.6 (appendix), Definition 4.9 and the form of \(C \).

\[
\sum_{j=1}^{m} |f(c_j^+) - f(d_j^-)| + \sum_{k=1}^{n} |f(e_k^-) - f(e_k^+)| \leq V_T(f) < \infty ;
\]

hence, \(\sup \{ |m_f(C)| : C \in \mathcal{C}(T) \} \) is finite. Also \(f = f_1 - f_2, f_k \) increasing, \(k = 1, 2 \). Therefore,

\[
m_f = m_{f_1} - m_{f_2}
\]

where \(m_{f_k} \in CA(T) \). As a result, \(m_f \) may be (uniquely) extended to the sigma field generated by \(\mathcal{C}(T) \), by the Carathéodory Extension theorem, but this is \(\mathcal{B}(T) \).

PROPOSITION 4.8. For \(f \in BV(T) \) and \(x \) of weak bounded variation on \(T \), a duality formula is obtained:

\[
\int_T f(t) \, dg^*(t) = \int_T g^*(t) \, dm_f(t)
\]

for all \(\xi^* \in L_\infty(\Omega) \), where \(m_f \in CA(T) \) and \(g^*(\cdot) = E[x(\cdot) \xi^*] \).

Proof: We refer to Proposition A.8 in the appendix for an integration by parts result for modified Stieltjes integrals.

\[
\text{MS-} \int_T f \, dg = \text{MS-} \int_T gdf + [fg]_a^b + \sum_{x} [f(x^-)(g(x)-g(x^-)) - f(x)(g(x^+)-g(x^-)) + f(x^+)(g(x^+)-g(x))] + [fg]_a^b
\]

where the sum is over the (common) discontinuities of \(f \) and \(g \).
Letting g be g^*, our desired result obtains if we can show that
\[\int_T g(t) \ dm_f(t) \] expands to become the right hand side of the above equation.

From the definition,
\[\int_T g(t) \ dm_f(t) = \lim_{D \to \infty} \sum_{k=1}^{n} g(t_k^i) \Delta m_f(t_k) \]
with partitions from $\mathcal{P}(T)$ and the t_k^i are arbitrary interior points.

For $t_k^i \in (t_{k-1}, t_k)$: $\Delta m_f(t_k) = m_f((t_{k-1}, t_k)) = f(t_{k-1}+) - f(t_{k-1})$.

For $t_k^i = t_k$: $\Delta m_f(t_k) = m_f([t_k]) = f(t_k^-) - f(t_k^-)$.

Hence $\sum_{D} g(t_k') \Delta m_f(t_k') =$
\[\sum_{\text{intervals}} \sum_{D} g(t_k') [f(t_{k-1}^i) - f(t_{k-1})] + \sum_{D} g(t_k') [f(t_{k-1}) - f(t_{k-1})] \]
and writing the first square bracket as
\[- \left(f(t_{k-1}) - f(t_{k-1}) \right) + \left(f(t_{k-1}) - f(t_{k-1}) \right) - \left(f(t_{k-1}) - f(t_{k-1}) \right) \]
we get the following sums
\[
S_1 = \sum_{D} g(t_k') \Delta (-f)(t_k'), \\
S_2 = \sum_{D} g(t_k') \left[f(t_{k-1}) - f(t_{k-1}) \right] + \left[f(t_{k-1}) - f(t_{k-1}) \right], \\
S_3 = \sum_{D} g(t_k') \left[f(t_{k-1}) - f(t_{k-1}) \right].
\]

S_2, S_3 are non-zero only for the discontinuities of $f, \{d_j\}$, a countable set. Therefore, including these in a sequence of increasing partitions and taking the limit,
\[
S_1 \to - \int_T g(t) df(t), \quad (+[fg]_a^b \text{ for } f \text{ continuous at endpoints}) \\
S_2 \to \lim_{j=1}^{\infty} \left[g(d_j^-) \{ f(d_j) - f(d_j^-) \} + g(d_j^+) \{ f(d_j^+) - f(d_j) \} \right], \\
S_3 \to \lim_{j=1}^{\infty} g(d_j) \left[f(d_j) - f(d_j^+) \right].
\]
If the endpoints appear in S_j, we get

$$
\sum_{k} g(t_k)[f(t_k^-) - f(t_k^+)] = g(a)[-f(a)] + g(b)[f(b)] = [fg]_a^b.
$$

Adding, we get

$$
\int_T g(t) \, df(t) + [fg]_a^b
$$

$$
+ \sum_{j=1}^n [f(d^-_j)(g(d^-_j) - g(d^-_j)) - f(d^+_j)(g(d^+_j) - g(d^-_j)) + f(d^-_j)(g(d^-_j) - g(d^-_j))]
$$

LEMMA 4.9. For $f \in BV(T)$, the Lebesgue integral

$$
\int_T x(t, \cdot) \, dm_f(t)
$$

exists.

Proof. Use the Fubini theorem and the fact that $Ex(\cdot)$ is bounded, uniformly in t. (x is product measurable with respect to

$(T \times \Omega, \mathcal{B}(T) \otimes F, \lambda \otimes P)$, where λ is Lebesgue measure.)

PROPOSITION 4.10. Let $f \in PS(x)$, then

(i) An unsymmetric Fubini theorem obtains,

$$
E\left[\int_T f(t) \, dx(t) \right] = \int_T f(t) \, dEx(t);
$$

in fact,

$$
E\left[\int_T f(t) \, dx(t) \xi^* \right] = \int_T f(t) \, dE[x(t) \, \xi^*]
$$

for all $\xi^* \in L_\infty(\Omega)$.

(ii) Moreover, if $f \in BV(T)$, the above also coincide with

$$
E\left[\int_T x(t, \cdot) \, dm_f(t) \xi^* \right] = \int_T E[x(t) \xi^*] \, dm_f(t)
$$

for all $\xi^* \in L_\infty(\Omega)$.
Proof. The equality in (i) follows since \(f \in \text{PS}(x) \) and that in (ii) from Lemma 4.9 and the ordinary Fubini theorem. Using the duality formula in Proposition 4.8,

\[
\int_T f(t) \, dE[x(t) \xi^*] = \int_T E[x(t) \xi^*] \, dm_f(t) = E\left[\int_T x(t, \cdot) \, dm_f(t) \xi^* \right]
\]

\(<\Rightarrow\) there exists

\[
\lim_{D \to \text{D}} E\left[\sum_{j=1}^{m} f(t_j) \Delta x(t_j) \xi^* \right] = \lim_{D \to \text{D}} E\left[\sum_{j=1}^{m} f(t_j) \Delta E[x(t_j) \xi^*] \right]
\]

\[= E\left[\int_T x(t, \cdot) \, dm_f(t) \xi^* \right],
\]

where the limit exists as a MS-integral. Thus

\[\lim_{D \to \text{D}} E[y_D \xi^*] = E[y \xi^*]\]

for all \(\xi^* \in L_\infty(\Omega) \); i.e., \(\lim_{D \to \text{D}} x^*(y_D) = x^*(y) \) for all \(x^* \in X^* \). Hence the weak limit of \(y_D \) exists and is \(y \);

\[\text{weak lim}_{D \to \text{D}} E[f(t_j) \Delta x(t_j)] = \int_T x(t, \cdot) \, dm_f(t) \in L_1(\Omega).
\]

Denoting the left limit by \(x_T = \int_T f(t) \, dx(t) \), we get the desired relation

\[E[x_T \xi^*] = \int_T f \, dE[x \xi^*] = \int_T E[x \xi^*] \, dm_f = E\left[\int_T x \, dm_f \xi^* \right].
\]

Definition 4.11. Define \(L_1(x) \) to be the closure, in the norm topology, of the (linear) span of \(\{x(t) : t \in T\} \).

Proof of Theorem 4.4.

\(x = (x(t) : t \in T) \neq \{0\} \Rightarrow \dim L_1(x) \geq 1 \Rightarrow L_1(x) \) is a non-trivial
Banach space in \(L_1(\Omega) \Rightarrow L_1^*(x) \) is total. Existence of the PS- \(\langle f, x \rangle \) is assured; see, for example, Corollary 5.5. By Proposition 4.10,

\[
x^*\left(\int f \, dx \right) = \int f \, dx^*(x) = \int x^*(x) \, dm_f = x^*\left(\int x \, dm_f \right)
\]

for all \(x^* \in X^* \). Consequently,

\[
\text{PS-} \int f \, dx = \text{SP-} \int x \, dm_f
\]

in \(L_1(x) \), which means a.s.

In effect, the Pettis-Stieltjes stochastic integral of \(f \) with respect to the random function \(x \) is represented by an integration by parts formula. The following discussion motivates Theorem 4.4, indicates the origin of Definition 4.6 and outlines the argument supporting the view of the formula as a representation.

By the definition of the PS- integral, existence requires

\[
x_f^{**} \in i[L_1(\Omega)] \subset L_1^{**}(\Omega).
\]

Identifying the respective dual spaces,

\[
L_1(\Omega) \to L_1^*(\Omega) \cong L_\infty(\Omega) \to L_\infty^*(\Omega) \cong BA(\Omega).
\]

where the equivalences are isometric isomorphisms. Our interest, however, is in the curve \(x = \{x(t): t \in T\} \) lying in the space \(L_1(\Omega) \) and we want to characterize the functionals

\[
E[\cdot \xi^*], \, \xi^* \in L_\infty(\Omega)
\]

which act on \(x(t), \, t \in T \). Rather than considering functionals on \(L_1(\Omega) \), we look at \(E[\cdot \xi^*] \) on the space generated by the curve \(x, \, L_1(x) \).
$L_1(x)$ is a closed, linear subspace of $L_1(\Omega)$ and, consequently, is a Banach space under the relative topology of the $L_1(\Omega)$ norm, $E|\cdot|$. The functionals on $L_1(x)$ look like $g^* + L_1^*(x)$, where $g^*(\cdot) = E[x(\cdot)\xi^*]$ and $L_1^*(x)$ is the annihilator of $L_1(x)$ in $L_1^*(\Omega)$, [1, p.72]. On $L_1(x)$, this is just $E[x(\cdot)\xi^*]$ which is in $BV(T)$.

Since the operator topology on $L_1^*(x)$ is the induced $\|\cdot\|_\infty$ topology on $L_\infty(\Omega)$, consider the $\|\cdot\|_u$ topology on $BV(T)$ and identify $(BV(T), \|\cdot\|_u)^*$. (Note: This is not necessarily an exact isometric isomorphism; the latter holds only in a special case.)

We recall the definition of $BD_1(T)$ and the characterization of its dual space by Hildebrandt, [2, p.873]. (The result allows T to be \mathbb{R}.)

Proposition 4.12. $(BD_1(T), \|\cdot\|_u)^* \cong BA(T)$, where the set functions in $BA(T)$ are defined on the field, $\mathcal{C}(T)$, of subsets of T and the correspondence is an isometric isomorphism.

$BV(T) \subset BD_1(T)$, so the characterization may be used for our purposes; in fact, there is an improvement due to the form of the functionals

$$x_f^{**}(\cdot) = \int_T f(t) \, d(\cdot)$$

on $(BV(T), \|\cdot\|_u)$.

Now we see exactly the motivation of Definition 4.6 since

$$m_f(C) = x_f^{**}(I_C) = \int_T f(t) \, dI_C(t) .$$

Combining this last result with the duality formula, the following framework is established for the correspondences between the various spaces used in the analysis:
i) $x(\cdot) \in \mathbb{E} = \mathbb{E}(T, L_1(\Omega))$, the space of random functions on T to $L_1(\Omega)$ with $E(x(\cdot)) \in BV(T)$. $g^*(\cdot) = E[x(\cdot)] = \xi^*[x(\cdot)] \in BV(T)$, where $\xi^* \in L_\infty(\Omega)$.

\[
\begin{array}{ccc}
L_1(\Omega) & \xrightarrow{\xi^*} & R \\
\uparrow x & & \downarrow g^* \\
T
\end{array}
\]

ii) $\mathbb{E} \overset{\eta}{\rightarrow} BV(T)$:

$\eta[x(\cdot)] = g^*(\cdot)$ by $\eta[x(t)] = g^*(t) = \xi^*[x(t)]$.

iii) $\overset{\xi}{\mathbb{E}} \overset{g^{**}}{\rightarrow} R$:

$g^{**}(\cdot) = \int_T f d \xi \in BV^*(T) \overset{\xi^*}{=} CA(T)$. $(g^{**} \circ \eta)[x(\cdot)] = g^{**}[g^*(\cdot)] = \int_T g^*(t) \, dm_f(t) = \int_T \xi^*[x(t)] \, dm_f(t)$.

Thus $g^{**} \circ \eta : \mathbb{E} \rightarrow R$ and $g^{**} \circ \eta$ is a bounded, linear functional on \mathbb{E}, $g^{**} \circ \eta \in \mathbb{E}^*$.

iv) $\overset{\xi}{\mathbb{E}} \overset{\xi^*}{\rightarrow} L_\infty(\Omega)$:

$\zeta[x(\cdot)] = \xi^*$, where ξ^* defines g^*.

v) $\overset{\xi^*}{\mathbb{E}} \overset{\xi^{**}}{\rightarrow} R$:

$\xi^{**}(\cdot) = \int_T f d \xi \in L_\infty^{**}(\Omega) \overset{\xi^*}{=} BA(\Omega)$. $(\xi^{**} \circ \zeta)[x(\cdot)] = \xi^{**}[\xi^*[x(\cdot)]] = \int_T f(t) \, d\xi^*[x(t)] = \int_T f(t) \, dg^*(t)$.

Hence $\xi^{**} \circ \zeta : \mathbb{E} \rightarrow R$ and $\xi^{**} \circ \zeta$ is a bounded, linear functional on \mathbb{E}, $\xi^{**} \circ \zeta \in \mathbb{E}^*$.

Comparing the above under the appropriate conditions, we get the representation $\xi^{**} \circ \zeta = g^{**} \circ \eta$ or, symbolically, the duality formula from 4.8, $f \circ \xi^* = m_f \circ \xi^*$. The relationship is illustrated in Figure 1.
We record the following from [4, p.77].

DEFINITION 4.13. The function x on (T, Q) to the Banach space \mathcal{X} is Pettis-integrable if for all $A \in Q$, there exists $x_A \in \mathcal{X}$ such that

$$x^*(x_A) = \int_A x^*[x(t)] \, d\lambda(t)$$

for all $x^* \in \mathcal{X}^*$, where the integral on the right is the scalar-valued Lebesgue integral. By definition

$$x_A = P-\int_A x(t) \, d\lambda(t).$$

The result of Theorem 4.4 holds for the Pettis integral.

COROLLARY 4.14. Suppose x is of weak bounded variation and $f \in PS(x)$. Then

$$PS-\int_A f(t) \, dx(t) = P-\int_A x(t) \, dm_f(t).$$

Proof. Let $x_A = PS-\langle f, x \rangle$. Then for $x^* \in \mathcal{X}^*$

$$x^*(x_A) = \int_A f dx^*(x) = \int_A x^*(x) \, dm_f = x^*(P-\int_A x \, dm_f)$$

by the duality formula. (Existence of the Pettis integral is insured by existence of the sample path integral, Lemma 4.9, and the usual Fubini theorem.)

REMARK. Let $T = [0, 1]$ and $f \in BD_1(T)$, but not in $BV(T)$, be defined by

$$f(t) = \sum_{n=1}^{\infty} (-1)^{n+1} n^{-1} I_{A_n}(t), \quad t \neq 0; \quad f(0) = 0.$$

where $A_n = (\frac{1}{n+1}, \frac{1}{n})$. Then

$$V_T(f) \geq \sum_{k=1}^{n} \frac{1}{n} \left| f\left(\frac{1}{k}\right) - f\left(\frac{1}{k+1}\right) \right| = \sum_{k=1}^{n} \frac{1}{n} \left(\frac{1}{k} + \frac{1}{k+1}\right) \to \infty.$$
Therefore, even for a random function as simple as \(x(t) = K + 0, \)
\[\int_T x \text{d}m_f = \infty. \] In fact, should we restrict \(f \) to be continuous on \(T \) but
not in \(\text{BV}(T) \), we can't define \(\text{SP-} \int_T x(t, \cdot) \text{d}m_f(t) \) for, say, \(x \) being
the Brownian motion process, since the paths are a.s. not of bounded variation.
As a result, \(f \in \text{BV}(T) \) is a necessary hypothesis for the representation.

Although the representation for arbitrary continuous functions cannot
be obtained in general, a strong approximation is available.

PROPOSITION 4.15. Let \(f \) be continuous on \(T \). For \(\varepsilon > 0 \), there
exists a polynomial \(p \) on \(T \) such that
\[
\left| \int_T f(t) \text{d}x(t) - \int_T x(t, \cdot) \text{d}p(t) \right| < \varepsilon.
\]

Proof. The Weierstrass approximation theorem insures the existence of a
polynomial \(p \) with \(\|f - p\|_u < \varepsilon/4V_T(x) \). Since \(p \in \text{BV}(T) \), the integrals
exist and the representation holds for \(\text{PS-} \int_T p \text{d}x \). Let \(\|x^*\| \leq 1 \) and
\[
y = \int_T f \text{d}x - \int_T p \text{d}x,
\]
then using Proposition 2.3
\[
\left| x^*(y) \right| \leq \int_T \left| f - p \right| \text{d}W_{at}(x, x^*) < \frac{\varepsilon}{2},
\]
which means that \(\|y\| < \varepsilon \).
5. OTHER PROPERTIES

Restricting x to be of weak bounded variation on T is, in a sense, a weakest possible assumption, since we shall usually want to integrate, at the least, all continuous functions.

Proposition 5.1. If $\text{PS-} \int_T f(t) \, dx(t)$ exists for all f continuous on T, then x is of weak bounded variation on T.

Proof. $\text{MS-} \int_T f(t) \, dx^*[x(t)]$ exists for all $x^* \in X^*$ and equals $\text{RS-} \int_T f(t) \, dx^*[x(t)]$ for f continuous, since the oscillation over (r, t) and $[r, t]$ is the same. (See the appendix.) For RS-integrals, the proposition is known, [3, p.271]. So $x^*[x(\cdot)] \in \text{BV}(T)$, for all $x^* \in X^*$.

Let $\text{ID-} \int_T f(t) \, dx(t)$ be the well-known Itô-Doob stochastic integral in $L_2(\Omega, F, P)$.

Proposition 5.2. When the following stochastic integrals exist, the $\text{PS-} \int_T f(t) \, dx(t)$ exists and coincides with them:

i) $\text{SP-} \int_T f(t) \, dx(t, \cdot)$, f bounded, LS-type in $L_1(\Omega)$.

ii) $\text{ID-} \int_T f(t) \, dx(t)$, where $\text{Ex}(\cdot) \in \text{BV}(T)$.

Proof. When $y = \text{SP} \int_T f \, dx$ exists, f is measurable and x is a.s. of bounded variation on T, hence $\text{Ex}(\cdot) \in \text{BV}(T)$. See [5]. Let $\xi^* \in L_\infty(\Omega)$,

$E[y \, \xi^*] = \int_T f(t) \, dE[x(t) \, \xi^*]$, hence $y = \text{PS-} \int_T f \, dx$. The argument for the ID-integral is similar to the remark following Definition 3.8.
Returning to the strong topology on X, the standard definition of a Riemann-Stieltjes integral in a Banach space, [4, p.62], may be slightly generalized.

DEFINITION 5.3. If \(\lim D \sum_{k=1}^{n} f(t'_{k}) \Delta x(t_{k}) \) exists in the norm topology with \(t'_{k} \) arbitrary in \((t_{k-1}, t_{k})\) and partitions are successively finer, then denote the limit by

\[
\text{MS-} \int_{T} f(t) \, dx(t)
\]

PROPOSITION 5.4. Let \(f \in \text{BD}_{1}(T) \) and \(x: T \to X \) such that \(x \) is of weak bounded variation on \(T \). Then \(\text{MS-} \int_{T} f(t) \, dx(t) \) exists (in the norm topology).

Proof. For \(\epsilon > 0 \), select a partition \(D_{\epsilon} \) of \(T \) such that \(\text{osc}(f) < \epsilon/4M \) over any open subinterval of any \(D \supset D_{\epsilon} \), where \(M = \nu_{T}(x) < \infty \). Recall that \(W(x, x^{*}) \leq 2M \| x^{*} \| \) for \(x^{*} \in X^{*} \) and let \(D, D' \supset D_{\epsilon} \).

\[
\| x^{*}[\sum_{D} f(t'_{j}) \Delta x(t_{j}) - \sum_{D'} f(t'_{k}) \Delta x(t_{k})] \| \leq \frac{\epsilon}{2} \sum_{D \cup D' \ j,k} \text{osc}(f) \| \Delta x^{*}[x(t_{j})] \| < \| x^{*} \| \epsilon / 2
\]

where \(\text{osc} \) is over \((t_{j-1}, t_{j}) \cap (t_{k-1}, t_{k})\) and \(\Delta g(t_{jk}) = g(\min\{t_{j}, t_{k}\}) - g(\max\{t_{j-1}, t_{k-1}\}) \). So

\[
\| \sum_{D} f \Delta x - \sum_{D'} f \Delta x \| < \epsilon
\]

and the limit exists.

COROLLARY 5.5. For \(f \in \text{BD}_{1}(T) \) and \(x \) of weak bounded variation on \(T, f \in \text{PS}(x) \) and

\[
\text{PS-} \int_{T} f(t) \, dx(t) = \text{MS-} \int_{T} f(t) \, dx(t)
\]
Proof. \(x^*[M^{*} \int_{T} f(t) \, dx(t)] = \int_{T} f(t) \, dx^*[x(t)]. \)

When the \(p \)-th moments of \(x(t) \) exist, \(t \in T \), the computation of the \(p \)-th moments of the PS-integral falls out from the definition. Let \(X = L_{1}(\Omega) \), then

\[
\mathbb{E}X^{A} = \int_{A} f(t) \, d\mathbb{E}x(t).
\]

When \(X = L_{2}(\Omega) \), take \(\xi^{*} = x_{A} \in L_{2}(\Omega) \) and

\[
\mathbb{E}X^{2}_{A} = \int_{A} f(t) \, \mathbb{E}[dx(t) \, x_{A}]
\]

\[
= \int_{A} \left[\int_{A} f(s) \, f(t) \, \mathbb{E}[dx(s) \, dx(t)] \right]
\]

where we assume \(\Gamma(\cdot, \cdot) \in BV(T^{2}) \), \(\Gamma(s, t) = \mathbb{E}[x(s) \, x(t)] \). If \(x \) has orthogonal increments

\[
\mathbb{E}X^{2}_{A} = \int_{A} |f(t)|^{2} \, \mathbb{E}|dx(t)|^{2}.
\]

In general, if \(X = L_{p}(\Omega) \), \(1 \leq p < \infty \), take \(\xi^{*} = x_{A}^{p-1} \in L_{q}(\Omega) \), \(q = p/(p-1) \), since \(\mathbb{E}|x_{A}^{p-1}|^{q} = \mathbb{E}|x_{A}|^{p} < \infty \) and

\[
\mathbb{E}X^{p}_{A} = \int_{A} f(s) \, \mathbb{E}[dx(s)] \left[\int_{A} f(t) \, dx(t) \right]^{p-1}.
\]

For \(p \) an integer,

\[
\mathbb{E}X^{p}_{A} = \int_{A} \cdots \int_{A} f(s_{1}) \cdots f(s_{p}) \, \mathbb{E}[dx(s_{1}) \cdots dx(s_{p})],
\]

again assuming \(\Gamma \in BV(T^{p}) \), \(\Gamma(s_{1}, \ldots, s_{p}) = \mathbb{E}[x(s_{1}) \cdots x(s_{p})] \).
6. EXAMPLES

6.1. To illustrate Theorem 4.4, the representation for the PS-integral, consider a Poisson process on $T = [0, b]$ with parameter $\lambda > 0$. $V_T(x)$ is finite, hence the PS-integral may be defined (see below).

For this process, almost all sample paths are increasing step functions, integer-valued with jumps of magnitude one and continuous from the left. Also, there are only a finite number of discontinuities in any finite interval.

Let f be continuous on T. Then the SP-integral exists and is

$$\int_T f(t) \, dx(t) = \sum_{k=1}^N f(d_k) \left[x(d_k^+) - x(d_k^-) \right] = \sum_{k=1}^N f(d_k)$$

where $N = N_T$ is a random variable representing the number of discontinuities, $\{d_k(\cdot)\}$, of the sample path functions on T. So the (stochastic) integral of f with respect to the Poisson process is a random sum of random variables.

For $D = \{t_j\}_{j=1}^m$ such that $\max_{1 \leq j \leq m} \Delta t_j < \max_{1 \leq k \leq N(\omega)} \Delta d_k(\omega)$ and $D \supset \{d_k(\omega)\}_{k=1}^{N(\omega)}$,

$$\sum_{j=1}^m x(t_j', \omega) \Delta m_f(t_j) = \sum_{j=2}^m (j-1) \{ \xi'(f(t_{j-1}) - f(t_j)) \}$$

where $t_j' \in (t_{j-1}, t_j)$ and ξ' is the sum of differences Δm_f on each subinterval $\Delta d_k(\omega)$. But $x(\cdot, \omega)$ is constant on these subintervals, so the telescoping ξ' reduces to $f[d_{k-1}(\omega)] - f[d_k(\omega)]$ and

$$\sum_{j=1}^m x(t_j', \omega) \Delta m_f(t_j) = \sum_{k=1}^{N(\omega)} \xi f[d_k(\omega)] = \sum_{k=1}^{N(\omega)} f(d_k)$$

that is, $\text{PS-} \int_T f \, dx = \text{SP-} \int_T x \, dm_f = \sum_{k=1}^{N(\omega)} f(d_k)$.
Here, the SP-, PS- and ID- integrals all exist and coincide.

6.2. Define a process \(x_\gamma \) on \(T = [0, b] \) by letting the increments \(\Delta x_\gamma(t) \) be independent and normally distributed with mean \(\gamma \sigma \Delta t \) and variance \(\sigma^2 \Delta t ; \gamma, \sigma > 0 \). \(x_\gamma \) is a shift of the Brownian motion for \(\gamma > 0 \) and \(V_T(x_\gamma) \) is finite.

Here the PS- and ID- integrals may be defined, but not the SP-integral.

Using the above three examples and others, a table may be set up displaying all possible combinations of existence for the sample path, Pettis-Stieltjes and Ito-Doob integrals.

REMARK. The Brownian motion shift is an example of a process which induces a measure of finite variation on \(\mathbb{B}(T) \) (countably additive) but not of finite strong variation.

\[
E|\Delta x_1(t)| = \left[\sqrt{2\Delta t} \int_0^{\sqrt{\Delta t/2}} e^{-\xi^2} d\xi + e^{-\Delta t/2} \right] E|\Delta x(t)|
\]

where \(x \) is (zero-mean) Brownian motion. Hence,

\[
E|\Delta x_1(t)| \geq E|\Delta x(t)| = \sigma \sqrt{2\Delta t / \pi}
\]

and

\[
S_T(x_1) \geq S_T(x) \geq \sigma \sqrt{2 / \pi} \sum_{k=1}^{n} \sqrt{\Delta t_{kn}} \rightarrow \infty .
\]
Recalling that $W_T(\mu) = \beta V_T(\mu)$ where $\mu: (T, Q) \to X$ and $1 \leq \beta \leq 2$, the Poisson process provides an example for which the equality is obtained ($\beta = 1$); let $\|x^*\| \leq 1$,

$$W_T(x, x^*) \leq \sup_{k=1}^{n} \mathbb{E}[\Delta x(t_{kn})] = \lambda b .$$

But

$$V_T(x) = \sup \mathbb{E} \left[\sum_{k=1}^{n} [x(t_{kn}) - x(s_{kn})] \right]$$

$$= EN_T = \mathbb{E}x(b) = \lambda b ,$$

where N_T is defined in 6.1. Therefore $W_T(x) \leq V_T(x)$, so $\beta = 1$. This may also be seen from the fact that

$$S_T(x) = \sup \mathbb{E}[\Delta x(t_{kn})] = \lambda b ,$$

so $V_T(x) = W_T(x) = S_T(x)$. In fact, these equalities obtain for any process in $L_1(\Omega)$ with nondecreasing (or nonincreasing) sample paths.

ACKNOWLEDGEMENT. This research constituted a part of my doctoral dissertation and I wish to express my gratitude to my advisor, Professor Ryszard Syski, for his valuable advice and helpful guidance.
APPENDIX

The properties of the scalar-valued modified Stieltjes integral are summarized here for reference. The integral is due to B. Dushnik and some results are listed in [3, p.273]. Proofs are omitted.

DEFINITION A.1. Let f and g be real-valued functions on T. The modified Stieltjes integral is defined as

$$\text{MS-} \int_T f(t) \, dg(t) = \lim_{D} \sum_{k=1}^{n} f(t_k') \Delta g(t_k)$$

where the limit is taken over successively finer partitions D of T. The t_k' are arbitrary interior points of the subintervals (t_{k-1}, t_k).

Note that the MS-integral is more general than the usual Riemann-Stieltjes (RS-) integral.

DEFINITION A.2. $\text{osc}(f)$ is the oscillation of f over a prescribed interval T and equals $\sup \{ |f(s) - f(t)| : s, t \in T \}$.

LEMMA A.3. Let $f \in BD_1(T)$, then for every $\varepsilon > 0$, there exists a partition D_ε of T such that $\text{osc}(f) < \varepsilon$ over any open subinterval of D_ε and, hence, over any open subinterval of $D \supset D_\varepsilon$.

PROPOSITION A.4. When $f \in BD_1(T)$ and $g \in BV(T)$, there exists

$$\text{MS-} \int_T f(t) \, dg(t) .$$

PROPOSITION A.5. Let $f \in BD_1(T)$ and g continuous in $BV(T)$. Then there exists

$$\text{RS-} \int_T f(t) \, dg(t) = \text{MS-} \int_T f(t) \, dg(t).$$
PROPOSITION A.6. Let \(f \in \text{BD}_1(T) \) and \(g \in \text{BV}(T) \). Then

\[
\text{MS-} \int fdg = \text{RS-} \int fdg_c + \text{MS-} \int fdg_d
\]

\[
= \text{RS-} \int fdg_c + \sum_t \{f(t+)[g(t+)-g(t)] + f(t-)[g(t)-g(t-)]\}
\]

where \(g_c \) is the continuous part of \(g \) and \(g_d \) exhibits the discontinuities.

PROPOSITION A.7. For \(f \in \text{BD}_1(T) \) and \(g \in \text{BV}(T) \), the Lebesgue-Stieltjes (LS-) integral exists and

\[
\text{LS-} \int fdg = \text{MS-} \int fdg .
\]

PROPOSITION A.8. When both \(f \) and \(g \) are in \(\text{BV}(T) \), a type of integration by parts theorem holds.

\[
\int fdg + \int gdf = [gf]_a^b + \sum_x \{f(x-)[g(x)-g(x-)] - f(x)[g(x+)-g(x-)] + f(x+)[g(x+)-g(x)]\}
\]

where the sum is taken over the (common) discontinuities of \(f \) and \(g \).
REFERENCES

