SIMULTANEOUS CONFIDENCE REGIONS FOR PREDICTIONS

E. Carlstein

University of North Carolina, Chapel Hill, NC 27514, USA

Abstract: After observing n independent responses at n corresponding design points in a linear regression setting, we wish to make a confidence statement about future responses that will apply simultaneously to all possible design points. Two appropriate prediction regions are derived using normal theory.

AMS Subject Classification: 62F25, 62J05.

Key Words: Simultaneous confidence, prediction, linear regression.

Supported by NSF Grant DMS-8400602.
1. Introduction.

Consider a linear regression situation in which the response for the \(i \)th individual follows the model:

\[
Y_i = Y_i(x) = x' \beta + \varepsilon_i \quad \forall x \in \mathbb{R}^p,
\]

where \(x \) is a vector of "independent" variables, \(\beta \in \mathbb{R}^p \) is a vector of unknown parameters, and \(\varepsilon_i \) is a random error associated with the \(i \)th individual.

We are able to observe \(n \) independent responses \(\{Y_i: 1 \leq i \leq n\} \) at the corresponding known design points \(\{x_i: 1 \leq i \leq n\}, x_i \in \mathbb{R}^p \). Based on this data, we would like to make a simultaneous confidence statement about the future realizations \(Y_{n+1}(x) \) at all possible design points \(x \in \mathbb{R}^p \).

Example: The output (\(Y \)) of a certain type of machine is a linear function of: the control settings (\(x \)), the unknown parameters (\(\beta \)), and a random error (\(\varepsilon_i \)) which is unobservable and is specific to the \(i \)th machine. Having sampled the outputs (\(Y_i \)) of \(n \) such machines--each at one setting (\(x_i \))--we now want a simultaneous confidence band for the performance of a new machine at all possible settings.

No solution to this simultaneous prediction interval problem appears in the literature. We shall obtain two solutions to a more general problem (involving \(k \) future individuals) by applying normal theory.

2. Results.

Assume model (1) holds for each \(i \in \{1, 2, \ldots, n+k\} \), with \(k \geq 1 \) and \(n > p \). Write \(X = (x_1, x_2, \ldots, x_n)' \) and \(Y = (Y_1(x_1), Y_2(x_2), \ldots, Y_n(x_n))' \) for the observed data.

Assume \(\text{rank}(X) = p \) and denote: \(D = (X'X)^{-1} \), \(\hat{\beta} = DX'Y \), \(s^2 = |Y-X\hat{\beta}|^2/(n-p) \).

Assume \(\{\varepsilon_i: 1 \leq i \leq n+k\} \) are iid \(N(0, \sigma^2) \) with \(\sigma^2 > 0 \) unknown.

Theorem 1: For \(\alpha \in (0, 1) \),

\[
P(Y_i(x) \leq x'\hat{\beta} \pm s((p+k)(1+x'Dx)F(1-\alpha; p+k, n-p))/2) \leq 1 - \alpha,
\]

\(\forall x \in \mathbb{R}^p \) and \(\forall i \in \{n+1, n+2, \ldots, n+k\} \),

where \(F(y; N, M) \) is the \(y \)-percentile of the F-distribution with \(N \) and \(M \) degrees of freedom.
of freedom in the numerator and denominator respectively.

Notice that the confidence region is centered at the usual point estimates. This region is analogous to the Scheffé-type simultaneous confidence band on $x' \beta$, $\forall x \in \mathbb{R}^p$. It is also analogous to Lieberman's (1961) simultaneous prediction interval on $\{Y_i: n+1 \leq i \leq n+k\}$, which applies to a fixed set $\{x_i: n+1 \leq i \leq n+k\}$. Both of these methods are discussed in detail by Miller (1981, Chapter 3). In a sense, our simultaneous prediction region combines the features of these two methods. Our proof extends the Scheffé F-projection technique (Miller, 1981, Chapter 2, Section 2) to the case of a $(p+k)$-dimensional linear space and a total of $n+k$ random variables Y_i.

Proof of Theorem 1: Denote $b' = (\hat{\beta}' - \beta', \varepsilon_{n+1}, \varepsilon_{n+2}, \ldots, \varepsilon_{n+k})$, $\tilde{D} = \begin{bmatrix} D & 0 \\ 0 & I_k \end{bmatrix}$, and $Q = (\hat{\beta} - \beta)'\tilde{D}^{-1}(\hat{\beta} - \beta)$. By the generalized Cauchy-Schwarz inequality (Rao, 1973, eq. 1e.1.4):

$$\max \{(b'a)^2/a'Da: a \in \mathbb{R}^{p+k}\} = b'\tilde{D}^{-1}b$$

$$= Q + \sum_{j=1}^{k} \varepsilon_{n+j}^2$$

$$\leq \chi^2_{(p+k)\sigma^2}$$

since $Q \sim \chi^2_{(p)\sigma^2}$ (Rao, 1973, p. 188) and Q is independent of the ε_{n+j}'s. It is well known that $(n-p)s^2 \sim \chi^2_{(n-p)\sigma^2}$, and furthermore s^2 is independent of Q and also of the ε_{n+j}'s. Hence $b'\tilde{D}^{-1}b/(p+k)s^2 \sim F(p+k,n-p)$, so that by (2):

$$P\{|b'a| \leq s((p+k)a'\tilde{D}F(1-\alpha; p+k,n-p))^{1/2}: a \in \mathbb{R}^{p+k}\} = 1-\alpha.$$

Now consider only those $a \in \mathbb{R}^{p+k}$ s.t. $a' = (x' | \delta_1, \delta_2, \ldots, \delta_k)$, where $x \in \mathbb{R}^p$ is arbitrary and the δ_j's are all zero except for a single $\delta_1 = -1$. Then $b'a = x'\hat{\beta} - Y_{n+1}(x)$, concluding the proof. \(\square\)
An alternative approach is to break up $Y_{n+1}(x)$ into its components $x'B$ and e_{n+1}, and to separately determine confidence intervals on these components. The separate intervals may then be combined into a confidence interval on $Y_{n+1}(x)$ via the Bonferroni inequality. This approach is formalized by

Theorem 2: For $\alpha \in (0,1)$ and $\bar{\alpha} \in (0,\alpha)$,

$$P\{Y_{n+1}(x) \leq x'B \pm s((px'Dx)(1-\alpha;p,n-p))^{1/2} + (kF(1-\alpha+\bar{\alpha};k,n-p))^{1/2}\} \geq 1-\alpha.$$

Proof: The standard Scheffé-type simultaneous confidence statement for $x'B$ is:

$$P\{x'B \leq x'B \pm s((px'Dx)(1-\alpha;p,n-p))^{1/2} \forall x \in R^p\} = 1-\alpha.$$

Denote $\varepsilon = (\varepsilon_{n+1}, \varepsilon_{n+2}, \ldots, \varepsilon_{n+k})'$. Since $\max\{\varepsilon'a\}^2/a'k = \varepsilon'\varepsilon/k^2 F(k,n-p)$, we have:

$$1-\alpha+\bar{\alpha} = P\{|\varepsilon'a| \leq s(a'kF(1-\alpha+\bar{\alpha};k,n-p))^{1/2} \forall a \in R^k\}$$

$$\leq P\{|\varepsilon_{n+1}^2| \leq s(kF(1-\alpha+\bar{\alpha};k,n-p))^{1/2} \forall i \in \{1,2,\ldots,k\}\}.$$

Applying the inequality $P\{A \cap B\} \geq P\{A\} + P\{B\} - 1$ establishes the Theorem.

3. Comparison.

Neither confidence region is uniformly superior to the other. Consider, for example, the case of simple linear regression with an intercept ($p=2$), with $k=1$ future individual to be predicted. We shall compare the widths of the confidence regions at the "center" of the data, i.e. at $x' = (1, \bar{x})$, where \bar{x} denotes the average of the second coordinates of the design points x_1, x_2, \ldots, x_n. Here the relevant comparison is between:

$$w_1(n, \alpha) = (3(1+n^{-1})F(1-\alpha; 3, n-2))^{1/2}$$ and

$$w_2(n, \alpha, \bar{\alpha}) = (2n^{-1}F(1-\alpha; 2, n-2))^{1/2} + (F(1-\alpha+\bar{\alpha}; 1, n-2))^{1/2}.$$

On the one hand, if $n=10$ and $\alpha=0.01=2\bar{\alpha}$ we find $w_1=5.00$ and $w_2=5.32$. On the other hand, as $n \to \infty$:

$$w_1(n, \alpha) \to (\chi^2(1-\alpha; 3))^{1/2}, \text{ while}$$

$$w_2(n, \alpha, \bar{\alpha}) \to (\chi^2(1-\alpha; 1))^{1/2}.$$
provided that \(\{ \tilde{a}_n : n \geq 1 \} \) is chosen so that \(\tilde{a}_n \to 0 \) and \(F(1-\tilde{a}_n; 2, n-2)/n \to 0 \). In practice, this suggests that for large sample sizes there is an \(\tilde{a}_n \in (0, \alpha) \) for which the second method provides a narrower band than the first, for \(x \) within a neighborhood of \(\bar{x} \). For example, if \(n=122 \) and \(\alpha=0.01=2\tilde{a} \) then \(w_1=3.46 \) and \(w_2=3.16 \).

Acknowledgment.

I thank Professor David Ruppert for his advice on the presentation of these results.