1 Abstract

When trying to find genetic associations, traditional analyses follow a “bottom-up” approach, examining one gene (or variant) and one disorder at a time, using meta analysis to combine results for multiple genes/disorders. These approaches may be underpowered by ignoring comorbidities of disorders and coheritability of variants and due to high multiple testing burden of individual tests. We propose a “fastLasso” method to simultaneously analyze the effects of multiple genes along a pathway on multiple diseases. In particular, we use a fast kernel machine approach in conjunction with gene-level group lasso to pinpoint probable causal genes within a pathway for a group of related phenotypes. Our approach takes advantage of shared genetic risk between phenotypes, leading to increased power and better understanding of the biological mechanism of shared disorders. Further, it is computationally efficient and flexible, with support for both binary and continuous phenotypes, as well as for incorporation of data from different individuals for the different disorders considered. We demonstrate the utility and performance of our method over pathway-based single disorder analysis via simulation study.

*Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America
†Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
‡Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
§Department of Statistics, National Cheng-Kung University, Tainan, Taiwan
2 Introduction

2.1 Motivation for Cross Disorder Analysis

Pleiotropy, or the effect of one gene on multiple traits, is an important topic in statistical genetics. Increasing evidence of comorbidity of diseases and of coheritability of variants that are associated with given disorders suggests that we can gain a better understanding of the genetic architecture of related disorders by considering them together within an analysis. This increased understanding of gene multifunctionality can be used to improve detection, diagnosis, classification, and treatment of correlated disorders (Hu et al., 2016; Insel et al., 2010; Lee et al., 2012; Morris and Cuthbert, 2012; Sanislow et al., 2010). Data for multi-disorder studies is also more widely available with electronic health data available to help quantify co-occurring disorders (Hu et al., 2016), and multi-institution initiatives being created to better understand shared disease pathology (e.g., NIMH’s Research Domain Criteria RDoC for studying related psychological disorders (Insel et al., 2010; Morris and Cuthbert, 2012; Sanislow et al., 2010)).

A motivating example of related phenotypes includes the psychological disorders anorexia nervosa (AN), schizophrenia (SCZ), and obsessive compulsive disorder (OCD), which evidence suggests have a large proportion of shared heritability (between 40-60%) (Anttila et al., 2016) and pairwise comorbidity much larger than the population prevalence of the individual disorders (Achim et al., 2009; Buckley et al., 2008; Fawzi and Fawzi, 2012; Foulon, 2003; Godart et al., 2000; Götestam et al., 1995; Hoff, 2012; Hudson et al., 2007; Kaye et al., 2004; Khalil et al., 2011; Kouidrat et al., 2014; Lysaker and Whitney, 2009; Mukhopadhaya et al., 2009; Poyurovsky et al., 2005, 2012; Rubenstein et al., 1992; Ruscio et al., 2010; Schirmbeck and Zink, 2013; Seeman, 2014; Swinbourne et al., 2012; Yum et al., 2009). By studying all three together, we can improve diagnosis and classification, making them more biologically-based and the disorders themselves easier to detect (Insel et al., 2010; Morris and Cuthbert, 2012). Li et al. (2014) discusses many other studies where leveraging pleiotropy can increase power, e.g., for psychiatric disorders (Andreasen et al., 2013; of the Psychiatric Genomics Consortium et al., 2013), cancer (Sakoda et al., 2013), and metabolic traits (Lee et al., 2012; Vattikuti et al., 2012).
In addition to increasing our functional knowledge of pleiotropic effects, utilizing information from multiple disorders simultaneously, as well as from multiple genes along a pathway, can increase our signal to detect important genetic associations, as single-trait analyses ignore shared information from correlated traits (Kiezun et al., 2012; Manolio et al., 2009) and can have high multiple testing burden (Wang et al., 2015). The gain in power from multi-trait analyses is especially important when dealing with variants with low effects and low minor allele frequencies, which may be more difficult to detect, as is the case with rare variant analysis. Not only does incorporation of correlation phenotypes effectively increase the sample size (Li et al., 2014; Maier et al., 2015), but leveraging coheritability information also enables additional borrowing of signal.

2.2 Current Methods

Three main classes of methods currently exist to model multiple disorders simultaneously: meta analysis and combined statistics, dimension reduction (e.g., principal component analysis, canonical correlation analysis, similarity based), and multi-response regression (Galesloot et al., 2014; Yang and Wang, 2012).

2.3 Meta Analysis and Combined Tests

Meta analyses and combined univariate tests are examples of “bottom-up” procedures, looking at single genes and disorders individually, e.g., through univariate genome-wide association studies (GWAS), and then combining results to detect pleiotropic effects and obtain tests of association at a multi-trait level.

Examples of meta analyses/combined tests include the work of Andreassen et al. (2013); Bolormaa et al. (2014); Van der Sluis et al. (2013); Yang et al. (2010). The approaches of both Bolormaa et al. (2014) and Yang et al. (2010) create a vector of test statistics from univariate association tests of a variant on a single trait and calculate a multivariate test statistic as a function of these test statistics. They both aim to test the null hypothesis of no genetic effect on any of the traits against the alternative that at least one trait has significant genetic effect from the variant of interest.
Yang et al. (2010) assumes the vector of test statistics follows a multivariate normal distribution and uses a modified O’Brien method (O’Brien, 1984; Wei and Johnson, 1985) to test whether or not the mean of this distribution is equal to zero, i.e. whether there is any association of the variant (or group of variants) with at least one of the traits. They create a test statistic that is the linear combination of the multivariate normal means (and corresponding estimated or known covariance of these means), estimating weights using sample splitting/cross validation and obtain significance via resampling and permutation.

Bolormaa et al. (2014) creates a quadratic test statistic from the signed t-values from GWAS (one for each variant of interest, if multiple variants are to be considered) and the correlation between each pair of traits over all variants, which approximately follows a chi-square distribution with degrees of freedom equal to the number of traits being considered.

Andreassen et al. (2013) and Van der Sluis et al. (2013) also look at summary statistic data from univariate GWAS tests, but instead of test statistics focus on combining the p-values. Andreassen et al. (2013) focuses on determining multivariate significance through the conditional false discovery rate (FDR) of two traits. In particular, they used the p-values from univariate GWAS tests to calculate the conditional cumulative distribution function (CDF) of the (corrected) p-values for each trait, conditional on the nominal p-value from the other trait, which they used to calculate the conditional FDR for each trait, creating a 2 dimensional “look up” table, looking at the maximum of the two FDRs for each variant, which they compared against a mixture model-based estimated distribution of SNPs (unconditional analysis). They note their approach has merit because you would expect a higher likelihood of a true positive variant association if it deemed significant in two associated phenotypes (Andreassen et al., 2013). It is also nonparametric with few assumptions on the traits or genetic variants. However, it does not extend to more than two traits like the aforementioned approaches.

Van der Sluis et al. (2013) combines univariate p-values for each trait into a “trait-based” p-value in their TATES (Trait-Based Association Test that uses Extended Simes procedure) approach, calculating the minimum p-value over all traits for a given variant, weighted by the effective number of independent p-values. The effective number of p-values is calculated using an eigendecomposition of the correlation matrix between the p-values, thus taking into account
correlations between the traits. Again this is testing the null hypotheses of no association between a particular variant and any of the traits. They note that follow-up is required to test more specific hypotheses of the genotype-phenotype model.

Combined tests and meta analyses have the benefit that, because they only use summary statistics (namely, the test statistic) from each GWAS test, they can analyze data with different subjects (even using published data where subject-level data is not available) and with different types of traits together (e.g., quantitative, binary, and survival), without making many assumptions on the distribution of the traits (Bolormaa et al., 2014; Van der Sluis et al., 2013; Yang et al., 2010). Further, opposing effects of variants on different traits will not cancel each other out to reduce power (Van der Sluis et al., 2013). In addition, the approaches of Yang et al. (2010), Bolormaa et al. (2014), and Van der Sluis et al. (2013) can analyze an arbitrary number of traits. However, these “bottom-up” methods may lose power by not taking into account unified information, such as the comorbidity and coheritability of traits, that can be incorporated by using the raw subject-level rather than summary data. These approaches also lose power due to high multiple testing burden from performing separate tests for each genetic variant (Wang et al., 2015). Finally, some, like Fisher’s method of combining test statistics, can have inflated type I errors when traits are correlated (Aschard et al., 2014).

2.4 Dimension Reduction

Dimension reduction methods of multivariate analysis include principal component analysis (PCA) and canonical correlation analysis (CCA). Rather than combining summary statistics, dimension reduction approaches combine raw information, directly accounting for the correlation between traits (Aschard et al., 2014). As such, they, along with multi-trait regression methods, are examples of “top-down” approaches. These approaches take advantage of combined information from multiple genes and/or phenotypes effectively performing meta analysis at the start, then refining to localize significant associations.

Aschard et al. (2014) and Klei et al. (2008) use PCA to perform multi-trait analysis. Aschard et al. (2014) suggests loss of power by only considering the top principal components (PCs) (e.g. the orthogonal linear combinations of data that explain the highest proportion
of variability in the phenotypes), and therefore proposes a global multistep combined PC (mCPC) score. The CPC test statistic is a function of the cumulative distribution function of the aggregate of tests of association between the leading PCs and genotype, and of the aggregate of tests of association between the remaining PCs and genotype, and follows a chi-square distribution under the null hypothesis. They note their method easily generalizes to many traits, and can be used as part of a multivariate linear model to account for population or family structure.

Klei et al. (2008) considers principal components of phenotype to not be biologically accurate enough and proposes instead to look at tests for association between genotype and the principal components of heritability (PCH). They create a new phenotype that is the linear combination of the trait phenotypes that has the highest heritability (Klei et al., 2008). They use sample splitting/bagging to estimate these optimal linear weights and note that they can use this approach on residuals from PCs rather than the PCs themselves. They perform a test of association between genotype and their PCH using a t-test.

Ferreira and Purcell (2008) use CCA to calculate a linear combination of traits that explains the highest proportion of covariability between genotype and phenotype, as is implemented in PLINK. MultiPhen (O’Reilly et al., 2012) is a similar method that is somewhat between dimension reduction and multi-trait regression models. MultiPhen performs an ordinal (proportional odds logistic) regression, modeling the probability of the genetic variants being less than or equal to a value (0,1,2) on a linear combination of the phenotypes, then using likelihood ratio tests for each variant to test whether that variant is significantly associated with at least one of the traits.

Dimension reduction techniques, again, can easily incorporate multiple (more than two) traits and often have lower multiple testing burden than meta-analysis techniques. In addition, they directly include correlations between traits, unlike meta analyses. However, they tend to be applicable mostly to normal traits only, and are not able to combine traits. In addition, they do not provide as interpretable results, as they relate linear combinations of traits with genotype, rather than the traits themselves.
2.5 Multi-trait Regression

Multi-trait regression approaches, like dimension reduction approaches, are “top-down” approaches, leveraging information about correlations between traits, comorbidity, and heritability directly. Most existing multi-trait regression models fit into the category of multivariate linear mixed effects models.

2.5.1 Multivariate Linear Mixed Effects Models

Multivariate linear mixed effects models (multivariate LMMs, or mLMMs) have been commonly used for genetic analyses involving multiple traits and multiple variants. mLMMs use a random effects framework to explicitly model genetic sharing through the variance/covariance of a genetic random effect term. Many mLMM methods focus on different aspects of multi-trait analysis, such as estimating heritability and pleiotropy through the genetic correlation between a set of traits (e.g., Korte et al. (2012); Lee et al. (2012); Loh et al. (2015); Vattikuti et al. (2012)) and multivariate genetic risk prediction (e.g., Maier et al. (2015)).

Vattikuti et al. (2012) and Lee et al. (2012) proposed a bivariate LMM to estimate the genetic correlation between a set of traits as a surrogate predictor of genome-wide pleiotropy. Vattikuti et al. (2012) used an EM algorithm for restricted maximum likelihood (REML) estimation for continuous traits, while Lee et al. (2012) proposed using an efficient average information restricted maximum likelihood (AIREML) approach, approximating the Hessian with the average information (Gilmour et al., 1995; Loh et al., 2015) to estimate on a continuous scale, and showed how a liability threshold model could be used to obtain genetic correlation when working with case/control data. Li et al. (2014), however, notes that the AIREML algorithm occasionally fails to converge and is not ideal for binary traits as it uses normality assumptions.

Loh et al. (2015) proposed “BOLT-REML” to increase efficiency and scalability (up to 50,000 subjects) of AIREML to estimate variance components and thus heritability and genetic correlations, using Monte Carlo sampling to approximate the gradient for the mixed models. They focus on common variants, however, and use liability scale to convert from case control
Korte et al. (2012) proposed a multitrait mixed model (MTMM) to estimate genome-wide heritability and genetic correlation of a pair of traits as functions of estimated variance components of the model, taking into account relatedness/kinship of individuals and environmental effects. They set up their model with two random effects terms to separately model within-trait and between-trait effects (as an interaction between the trait an observation is for and the genotype), allowing them to perform three marker-level tests for GWAS data, testing for: (1) common and differing effect loci between traits, (2) common genetic effects between traits, and (3) differing effects between traits. This model is more flexible but less efficient than that proposed by Maier et al. (2015) for estimating pleiotropy, and only discusses testing for one marker at a time for GWAS testing, which can have a high multiple testing burden.

Maier et al. (2015) proposed a mLMM for genetic risk prediction. Making use of the AIREML approach, they calculate multi-trait genomic best linear unbiased predictors (MT-GBLUPs) for individual risk prediction of sampled individuals and use these to calculate snp-level BLUPs which can be projected to predict risk for individuals not in the sample. Their approach allows for individuals to come from different samples, but has lower accuracy for polygenic traits when not also incorporating additional gene annotation information.

While these approaches have been successful, their focus is not on association testing of genotype with the traits, but on understanding and quantifying how the traits are related, or on predicting phenotype for new individuals. Two approaches that do aim to perform association testing are those of Zhou and Stephens (2014) and Casale et al. (2015).

Zhou and Stephens (2014) proposed a mLMM for GWAS, accounting for external covariates such as population substructure and kinship, using the EM algorithm with Newton-Raphson to combine stability and fast convergence. Their method does not allow for missingness in phenotype data, however, and requires all phenotypes be measured on the same subject. Further, they require a separate likelihood ratio test (LRT) for each variant of interest, leading to a higher multiple testing burden.

Casale et al. (2015) proposed the multi-trait set test “mSet” model, using two variance components to model the relatedness of individuals and population substructure (“relatedness”
random effect) along with the combined genetic effect over a variant set (“set” random effect). Their model allows for testing of no genetic effect (no “set” component) for genome-wide data on up to 500,000 subjects using efficient linear algebra to make it take a similar amount of time as fitting variance component models with a single variance component (Casale et al., 2015). However, they do not pinpoint which variants within the set are more likely to be associated with at least one of the phenotypes.

As mixed models, mLMMs are flexible and efficient, and are more robust and higher power than fixed effects models for polygenic traits, as they can aggregate information over sets of variants with weak individual effect (Korte et al., 2012; Wu et al., 2010, 2011). Like dimension reduction approaches, they take advantage of shared information, coheritability and comorbidity, but yield much more interpretable results and may allow for phenotype data to come from different individuals/studies. However, they assume normality of the phenotype data, or simply perform a linearization of binary case/control data, which may work well for heritability estimates (Lee et al., 2012) but is not valid for association testing because of poor modeling of confounding effects.

2.6 Other Multi-trait Regression Models

Others have looked at non-LMM multi-trait regression models. Wang et al. (2015) proposed a multivariate functional linear regression, which, rather than looking at the genetic loci as discrete variables, includes their effects as a smooth function of genetic position. Approximate F-tests, adjusting for covariates, then can be used to test for no genetic effect on any of the traits of interest (Wang et al., 2015). This has the benefit of taking into account covariates and genomic position and incorporating information on linkage disequilibrium in a natural manner, but does not differentiate where the genetic signal, if any, is coming from.

Li et al. (2014) suggested the related bivariate ridge regression to predict multiple phenotypes, using the correlation between the diseases to increase prediction accuracy (the area under the receiver operator curve) over single-trait models. They suggest that by effectively increasing sample size, they can overcome one of the main bottlenecks in genetic risk prediction (Makowsky et al., 2011; Wray et al., 2013). Their model includes three regularization param-
eters for two disorders - one for each of the genetic effect of each disorder, and one for the correlation between them, which they tune using a grid search and cross-validation to choose the optimal values. Their use of ridge regression is due to the belief (De Los Campos et al., 2010) that prediction models are more powerful with the inclusion of more traits with weaker effects (even when including noise and opposite effect terms), e.g. a whole-genome model, than a sparse model with only a few strong effects, as would be selected with a lasso model (Li et al., 2014). This is good for risk prediction, but less ideal for pinpointing variants most likely to be causal within a variant set.

Other approaches are similarity-based. Wei and Lu (2015) proposes a generalized similarity U test for sequencing data that can be applied to multiple traits. Maity et al. (2012) and Broadaway et al. (2016) propose kernel-based similarity methods. Maity et al. (2012) suggested a multivariate kernel machine regression model, using a kernel term to express complex epistatic effects of different variants. They use a score test statistic to test for no genetic effect of a set of variants. This is similar to a mLMM, which can be seen through equivalence of norm functions from the penalized log likelihood for a fixed covariance matrix, but can be generalized to other exponential family distributions and allows more flexible modeling of relatedness between traits. Broadaway et al. (2016) proposed the Gene Association with Multiple Traits (GAMuT), which uses a “machine learning kernel distance-covariance” approach to test for association between multiple traits and a set of genetic variants (Broadaway et al., 2016). Their approach is nonparametric, relating the similarity between traits to the similarity between genotypes on a pairwise level. It does not assume normality of phenotype, and is easy to include any arbitrary number of genetic variants. However, neither of these methods focus on variant selection of genetic variants that are associated with at least one trait.

2.7 Introduction to fastLasso

Following the work of Maity et al. (2012), we propose a kernel machine approach to look for associations between genetic variants and a group of traits. Rather than testing for overall association between a variant set and the traits, however, we wish to perform gene refining to identify which genes within a pathway are more likely to be the causal genes. We propose the
“fastLasso” method for performing cross-disorder variable selection on genes within a pathway. Our method performs group lasso (Yuan and Lin, 2006) on an efficient decomposition of a cross-disorder kernel matrix in order to identify which single nucleotide variants (SNVs) inside of genes within a pathway are associated with at least one of multiple traits. We choose the lasso rather than ridge regression, as in Li et al. (2014), for regularization because we wish to pinpoint causal genes and generate hypotheses for further biological follow up, requiring sparser and more defined models than are required for genetic risk prediction.

The fastLasso approach

1. takes advantage of the ability of kernel methods to capture complex epistatic relationships between genetic variants,
2. is able to simultaneously perform effect estimation and variable selection on the SNVs along a pathway for continuous or binary traits, and
3. can combine information from different studies, not requiring overlapping subjects for the different traits considered.

By combining information from multiple disorders we have increased signal to detect rare variants. We are able to do this in an efficient, scalable manner by borrowing the low-rank fastKM decomposition of Marceau et al. (2015).

We perform a simulation study based off of the CoLaus genome wide association study (GWAS) and exon-sequencing of single nucleotide variants (SNVs) to examine the performance of our method compared with traditional approaches, only studying one disorder at a time, then combining results.

3 Methods

We consider a study with D disorders of interest with some expected genetic or diagnostic commonality. We let Y_d denote a $n_d \times 1$ vector of responses for all patients whose disease status (continuous or binary phenotype) is known for disorder $d = 1, ..., D$. Further, we define X_d to be a $n_d \times p_d$ matrix of non-genetic covariates (e.g., age, sex, population substructure) for
disorder d, and $G_{d,\ell}$ to be a $n_d \times m_\ell$ genotype design matrix for gene $\ell = 1, ..., L$ within a pathway of interest, where m_ℓ is the total number of markers (single nucleotide variants, snvs) genotyped for gene ℓ.

For simplicity, we consider the case where we are interested in $D = 3$ coheritable disorders, and let $Y_{n \times 1} = (Y_1, Y_2, Y_3)^T$ and $X_{n \times p} = \begin{bmatrix} X_1 & 0 & 0 \\ 0 & X_2 & 0 \\ 0 & 0 & X_3 \end{bmatrix}$ be the combined phenotype and covariate design matrices, respectively. Here $n = \sum_{d=1}^3 n_d$, $p = \sum_{d=1}^3 p_d$.

Our goal is to determine which genes within a pathway of interest are significantly associated with at least one of the disorders, simultaneously performing variable selection and estimating effect size from each variant/gene. To do this, we wish to perform group lasso based on the cross-disorder kernel machine regression model

$$
g(\mu_Y) = g\left(\begin{array}{c} \mu_{Y_1} \\ \mu_{Y_2} \\ \mu_{Y_3} \end{array} \right) = \beta_0 + X\beta + \sum_{\ell=1}^L K_\ell \alpha_\ell \quad (1)$$

where $\beta_{p \times 1} = (\beta_1 \beta_2 \beta_3)^T$, $\mu_Y = E(Y|X,G)$ is the phenotypic mean given all genetic and non-genetic covariates, and $g(\mu_Y)$ is the canonical link function. Further, K_ℓ is a $n \times n$ kernel similarity matrix for gene ℓ and α_ℓ is a $n \times 1$ random effect of gene ℓ, $\alpha_\ell \sim N(0, \tau_\ell K_\ell^{-1})$ for invertible K_ℓ, or more generally $h_\ell = K_\ell \alpha_\ell \sim N(0, \tau_\ell K_\ell)$.

In order to make this computationally feasible, we follow three main steps: (1) form a kernel matrix to evaluate the genetic similarity between individuals within and between disorder studies, (2) perform dimension reduction on the similarity kernel and form a low-rank fixed effect term to summarize genetic effects over all studies/disorders, in the fastKM manner, and (3) fit a fastLasso group lasso model using the low-rank fastKM term.

3.1 Kernel Evaluation

We form a kernel matrix to evaluate genetic similarity between all individuals using column-standardized $n \times m_\ell$ genotype design matrices, $\tilde{G}_\ell = (\tilde{G}_{1,\ell}, \tilde{G}_{2,\ell}, \tilde{G}_{3,\ell})^T$, using the identity by state (IBS) kernel or linear kernel $\tilde{G}_\ell \tilde{G}_\ell^T$. We note that for rare variants these are nearly equiv-
alent. We can alternatively express K_ℓ in terms of its subcomponents: $K_\ell = \begin{bmatrix} K_{11,\ell} & K_{12,\ell} & K_{13,\ell} \\ K_{12,\ell}^T & K_{22,\ell} & K_{23,\ell} \\ K_{13,\ell}^T & K_{23,\ell}^T & K_{33,\ell} \end{bmatrix}$.

Here $K_{d,d',\ell}$ is $n_d \times n_{d'}$ matrix representing the genetic similarity between the individuals from disorder/study d and disorder/study d'. This emphasizes the explicit incorporation of covariance of variants between individuals from different studies (focusing on different disorders) since $K_{d,d',\ell}$ is not required to be zero.

3.2 Dimension Reduction

We wish to make group lasso computationally efficient for the large sample size and number of variants. In order to do so, we perform kernel principal component analysis (kPCA) on our L kernel matrices. We perform an eigendecomposition of each kernel matrix as $K_\ell = Q_\ell \Lambda_\ell Q_\ell^T$, where $Q_{\ell,n \times m_\ell}$ is a matrix of eigenvectors, and $\Lambda_{\ell,m_\ell \times m_\ell}$ is a diagonal matrix of eigenvalues.

We then take the top k eigenvalues which collectively explain $e\%$ (e.g., 95\%) of the variability in the kernel matrix to form a rank-k decomposition, where $k < m_\ell < n$. Following the fastKM methodology (Marceau et al., 2015), we can form a low rank approximation for the gene effect as: $(K_\ell \alpha_\ell)_{n \times 1} \approx Z_\ell Z_\ell^T \alpha_\ell \equiv (Z_\ell \gamma_\ell)_{k \times 1}$. We can thus form a new cross-disorder fastKM model of the form

$$g(\mu_Y) = g \begin{pmatrix} \mu_{Y_1} \\ \mu_{Y_2} \\ \mu_{Y_3} \end{pmatrix} = \beta_0 + X \beta + \sum_{\ell=1}^{L} Z_\ell \gamma_\ell$$

(2)

where γ_ℓ is a $k_\ell \times 1$ vector, and $k_\ell << n$, improving the computational efficiency, scalability, and stability of a group lasso model fit.

3.3 fastLasso

We can can fit a group lasso model based on the cross-disorder fastKM model using existing software, e.g. the grpreg package in R (Breheny and Huang, 2015), using the fastKM design matrix $Z_{n \times (1+p+k)} = (1, X, Z_1, Z_2, ..., Z_L)^T$, $k = \sum_{\ell=1}^{L} k_\ell$ and cross-disorder phenotype vector Y as input.
As a group lasso model, fastLasso solution is the γ that minimizes (Breheny and Huang, 2009)

$$Q(\gamma) = \frac{1}{2n} ||Y - Z\gamma||^2 + \lambda \sum_{\ell=1}^{L} \sqrt{k_\ell} ||\gamma_\ell||$$

imposing sparsity on a pathway level, but borrowing signal from all variants within chosen genes (Breheny and Huang, 2009).

We use Bayesian Information Criterion (BIC), $BIC(\lambda) = 2L_\lambda + \log(n)df_\lambda$ (Breheny and Huang, 2009), to tune the regularization parameter λ, as BIC is known to be consistent and computationally efficient (Yang, 2005). Here df_λ is the effective number of model parameters, which in grpreg is estimated as a function of the fitted coefficients $\hat{\gamma}$ and unpenalized fitted coefficients (Breheny and Huang, 2009).

We obtain as output a list of the genes which are likely to be associated with at least one of the traits, as well as relative effect sizes for the variants within those genes.

3.4 Computational Efficiency

The computational burden of the fastLasso approach is dominated by three operations: (1) calculating the genetic similarity kernel matrices, (2) subsequently performing eigenvalue decomposition on said kernel matrices, and (3) tuning and fitting a group lasso model. The first two can be straightforwardly parallelized, as the separate gene kernel matrices are independent from one another. We can further improve the efficiency of (2) by noting that the rank of these similarity kernel matrices are always $\leq \min(m_\ell, n)$, so we can either compute just the top m_ℓ eigenvalues for each kernel matrix (using efficient numerical linear algebra, as in Qiu et al. (2016)), or equivalently perform eigendecomposition on the $m_\ell \times m_\ell$ matrix $\tilde{G}^T \tilde{G}$ (we assume $m_\ell << n$ since each kernel matrix is gene-level). (3) is relatively efficient using a fast coordinate descent algorithm in combination with the efficient BIC criterion (Breheny and Huang, 2009), and we improve upon this further with use of the fastKM design matrix.
4 Simulation Study

4.1 Data Generation

We perform a simulation study to examine the type I error and power of our method for $D = 3$ traits, using the CoLaus clinical trial study data of Firmann et al. (2008) as a basis to generate simulated genotypes, using real data to take advantage of the natural correlations between SNVs. The CoLaus study was a population-based trial examining cardiovascular, psychological, and related metabolic risk factors in Caucasians in Lausanne, Switzerland (Firmann et al., 2008; Preisig et al., 2009). From the initial $n = 1769$ individuals for which we have full genotype information (GWAS with imputations for missing genotype information), we first form a gene pool from which to base our simulations.

To do so, we extract information from genes within chromosomes 1-9 in the CoLaus study. We are interested in how leveraging information from multiple disorders can help in the identification of rare variant associations, so we only include rare variants, which we here define as having a minor allele frequency (MAF) of less than or equal to 1%, in our gene pool. Further, we consider only those genes with at least 5 rare variants, leaving us with 5421 variants from 102 genes in our analysis, with between 5 and 230 SNVs per gene considered. The median number of rare variants/gene was 42. We perform sampling from this variant pool to form sampled individuals and genotypes using random sampling for continuous traits, as described below. An approach to perform case control sampling for binary traits can be found in appendix 6.

4.1.1 Random Sampling of Genotype Matrix

For continuous trait simulations, we perform random sampling of the variant pool. We first create a 6000 x 5421 sample genotype matrix G^*, creating each individual genotype by individually sampling each gene with replacement from the genotypes from the original subjects, then repeating this process 6000 times to get 6000 sampled genotypes. The first 2000 individuals in G^* were assigned to disorder 1, the next 2000 to disorder 2, and the last 2000 to disorder 3.

We randomly sample 20% of genes to be causal for one or more of the disorders. Of these, we consider $s = 40\%$ or $s = 60\%$ of the causal variants to be common between all three
disorders and therefore 60% or 40% to be unique to only one of the disorders, spread evenly amongst all three disorders. For simplicity, we consider all variants within causal genes to be causal.

Continuous phenotypes for subjects \(j = 1, \ldots, 2000 \) within disorder \(d = 1, 2, 3 \) were randomly generated from a normal distribution \(y_{j,d} \sim N(\mu_{j,d},1) \) with mean \(\mu_{j,d} = \beta_0 + \beta_X + G^*_{jd} \beta_d. \) Here \(G^*_{jd} \) denotes the \(d \times j^{th} \) row of the random genotype matrix \(G^* \), i.e. the genotype for the \(j^{th} \) individual within disorder \(d \).

For our simulations, we set \(\beta_0 = 1 \) to approximate a 50% disease rate, and set

\[
\beta_d = \begin{cases}
\gamma_G & \text{if gene } \ell \text{ is causal for disorder } d \\
0 & \text{if gene } \ell \text{ is noncausal for disorder } d
\end{cases}
\]

For simplicity, we do not consider any non-genetic covariates, so \(X \beta_X = 0 \). Further, we consider the same effect size \(\gamma_G \) for all causal genes within all disorders, rather than basing on minor allele frequency. We consider \(\gamma_G = 1, 2 \) for continuous traits, leading to models where approximately 70% and 90% of the variability in the model is explained by the causal variants.

4.2 fastLasso Simulation

We use the grpreg package in R (Breheny and Huang, 2015) to perform group lasso on the fastKM genetic design matrix, defining a group to be a gene. We find the optimal model over a grid of \(\lambda \) tuning parameters using BIC, but further perform hard thresholding of the model to obtain better separation of normed coefficients between causal and noncausal variants. This is due to the properties of the null model fit, which still includes many nonzero coefficient terms, likely due to the fact that the genotype design matrix is very rare. We use the null model to determine an appropriate threshold, examining the distribution of the optimal fastLasso coefficients. A histogram of the non-zero coefficients from this fit can be found in figure 1 below. We see that the largest absolute value coefficient is just over 0.03, indicating \(T = 0.02 \) and \(T = 0.03 \) are good choices for threshold values. To perform the hard thresholding, variants whose \(\beta \) coefficients were less than threshold \(T \) in the BIC-chosen optimal model were set to
We compare the cross-disorder model fit to that of fitting a group lasso separately within each disorder. We summarize results from the single disorder analyses by determining the union and intersection of the genes found to have non-zero coefficients over the three single disorder model fits. These provide positive and negative controls, respectively.

5 Results

From table 1 below we see that in all simulated scenarios the cross disorder (CD) model is able to find on average around double the causal genes that can be found using the union of the single disorder (SD-U) approach. This is even more evident among the “unshared” causal variants, i.e. those that are causal for a single disorder. While both methods do better in finding the variants that are shared (i.e. causal for all three disorders), the magnitude of improvement of the cross disorder model over the union of single disorder models is much larger for unshared than shared variants. We see that the cross disorder model also outperforms the union of single disorder models in terms of false positive rate, picking on average fewer non-causal genes in the optimal model in all scenarios considered except for when $\gamma_G = 2$ and $T = 0.02$. Though we see this trend, we note that the median false positive rate is actually on average much lower for the single disorder models, indicating they may just choose fewer genes as significant overall but have less stability in model fit than the cross disorder model.
This can be seen in figure 2 below. We note that with approximately 5000 genetic variants, a model with sample size \(n = 6000 \) is much more likely to be stable than one with \(n = 2000 \). The intersect of the single disorder models performs poorly (has close to zero true positive rate) in all scenarios, but also does not pick out any non-causal genes (i.e., a zero false positive rate) and is overall of little interest statistically.
Table 1: Average true positive and false positive rates (and corresponding standard deviation) for cross disorder (CD), the union of single disorder (SD-U), and the intersection of single disorder (SD-I) continuous trait kernel machine model analyses over 100 simulations. Largest values within each category are in bold font.

<table>
<thead>
<tr>
<th>γ</th>
<th>% causal explained</th>
<th>% variance explained</th>
<th>threshold</th>
<th>True Positive Rate</th>
<th>False Positive Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>SD-U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>shared</td>
<td>unshared</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>SD-U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>SD-U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD</td>
<td>SD-U</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>66.8</td>
<td>0.02</td>
<td>1</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>1</td>
<td>60</td>
<td>69.4</td>
<td>0.02</td>
<td>1</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0)</td>
<td>(0.27)</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>88.8</td>
<td>0.02</td>
<td>1</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>90.1</td>
<td>0.02</td>
<td>1</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0)</td>
<td>(0.17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.94</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>90.1</td>
<td>0.02</td>
<td>(0.04)</td>
<td>(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.01)</td>
<td>(0.21)</td>
</tr>
</tbody>
</table>

19
Figure 2: True positive and false positive rates for cross disorder (CD), the union of single disorder (SD-U), and the intersection of single disorder (SD-I) continuous trait kernel machine model analyses over 100 simulations

6 Discussion

In this paper, we consider the benefits of leveraging information from multiple correlated traits when conducting genetic association studies. Namely, we note that looking for association between a set of variants and a set of phenotypes/disorders allows us to gain a better understanding of the underlying pleiotropy and true genetic architecture for these disorders, leading to the potential for improved diagnosis, classification, and treatment. Further, by increasing our effective sample size and by allowing incorporation of comorbidity and coheritability directly into our analyses, we show that we increase our power to detect true causal variants (those that are associated with at least one trait) while having nearly identical, or occasionally lower, false positive rates. This additional power is especially helpful when trying to detect rare variant associations.
While there are many existing approaches to incorporate multiple traits into an analysis, not many are able to pinpoint the genes/variants most likely to be associated with at least one trait. Most focus on either single-variant tests, which lead to high multiple testing burden, or overall genome-wide tests of association. We propose the fastLasso method to efficiently perform gene-selection while estimating relative effects of association between said genes and at least one of the disorders that allows data to come from different studies, not requiring overlapping individuals, in a way that is easy and valid to apply to both continuous and binary traits using existing group lasso software. We note that as the number of genetic variants increases, it becomes infeasible to perform this type of analysis without the fastKM decomposition.

In our simulations, we suggest using a hard threshold on fastLasso to decrease false positive rates stemming from the sparse genotype design matrix. In our simulation we choose this threshold using the null model fit, looking at the distribution of nonzero model coefficients. We note that this could also be used for real data applications by fitting the fastLasso model with permuted phenotype values, creating an effective null model for comparison.

While we focus on continuous trait SNV-level analysis for genetic main effects, we note it is straightforward to extend to binary traits (also handled in the fastKM and grpreg R packages). It is also straightforward to add terms to our model to incorporate other genetic information, e.g. common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs), leading to a full pathway model to further understand the true biological network of the disorders studied. Further, an additional kernel term could allow for incorporation of population substructure or gene-environment (GxE) interaction, as is demonstrated in the fastKM methodology.

References

Andreassen, O. A., Djurovic, S., Thompson, W. K., Schork, A. J., Kendler, K. S., O’Donovan,

Firmann, M., Mayor, V., Vidal, P. M., Bochud, M., Pécoud, A., Hayoz, D., Paccaud, F.,
to investigate the epidemiology and genetic determinants of cardiovascular risk factors and

algorithm for variance parameter estimation in linear mixed models. *Biometrics*, pages 1440–
1450.

anorexia nervosa and bulimia nervosa: co-morbidity and chronology of appearance. *European

disorders in norwegian psychiatric institutions. *International Journal of Eating Disorders*,

Hoff, P. (2012). Eugen bleuler’s concept of schizophrenia and its relevance to present-day

of eating disorders in the national comorbidity survey replication. *Biological psychiatry*,

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., and
research on mental disorders.

of anxiety disorders with anorexia and bulimia nervosa. *American Journal of Psychiatry*,
161(12):2215–2221.

patients: a review. *Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity*,
16(3):e150–e156.

Qiu, Y., Mei, J., and authors of the ARPACK library. See file AUTHORS for details. (2016). *rARPACK: Solvers for Large Scale Eigenvalue and SVD Problems*. R package version 0.11-0.

Appendices

A Case Control Sampling of Genotype Matrix for Binary Traits

Below we discuss a case control framework for binary trait simulations for multiple traits that enables true controls (i.e., individuals who are cases for all of the considered traits). We note the model fitting would be the same as for quantitative traits using the generalized model framework.

Given the randomly sampled genotype matrix G^*, we consider a case control sampling framework to generate simulated genotype and phenotype for all three disorders, giving us $CS_d = 1000$ cases for each disorder $d = 1, 2, 3$ and $CN = 3000$ “true controls,” defined as those which are controls for all three disorders simultaneously – 1000 per disorder. Here causal variants are determined in the same manner as for continuous phenotype simulations.

1. Sample one individual (row) from G^*, which we denote as G^*_i.

2. For disorder $d = 1, 2, 3$ do:

 (a) If number of accumulated sampled cases for disorder d is less than the desired number of cases, or if the number of true controls is less than the desired number of controls:

 i. Generate probability of case for individual i, disorder d as: $p_{i,d} = \frac{\exp(\beta_0 + X_\beta + G^*_i \beta_d)}{1 + \exp(\beta_0 + X_\beta + G^*_i \beta_d)}$

 ii. Generate phenotype for individual i, disorder d as: $y_{i,d} \sim Bin(1, p_{i,d})$.

 iii. If $y_{i,d} = 1$, save individual i as a case for disorder d, and sample the next individual. Otherwise, continue.

3. If $y_{i,d} = 0 \forall d$, save individual i as a true control.

4. Continue until all cases and controls are determined.
B Cross Disorder and Single Disorder Tuning Parameter Summaries

Table 2: Average optimal tuning parameter (and corresponding standard deviation) for the cross disorder and single disorder continuous trait kernel machine models over 100 simulations

<table>
<thead>
<tr>
<th>γ_G</th>
<th>% causals</th>
<th>% variance explained</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>cross disorder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>disorder</td>
</tr>
<tr>
<td>γ_G</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>66.8</td>
<td>(6 $\times 10^{-4}$)</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>69.4</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>γ_G</td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>88.8</td>
<td>(4 $\times 10^{-4}$)</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>90.1</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5 $\times 10^{-4}$)</td>
</tr>
</tbody>
</table>