Some Discrete Distribution Families

Many families of discrete distributions have been studied; we shall discuss the ones that are most commonly found in applications.

In each family, we need a formula for the probability mass function (pmf), and knowing the population expected value and standard deviation is also important.
Discrete Uniform Distribution

If a random variable X takes only a finite number of values x_1, x_2, \ldots, x_n, and they have equal probabilities $1/n$, it has a discrete uniform distribution.

Expected value:

$$
\mu_X = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

Variance:

$$
\sigma_X^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)^2
$$
Most often, the values are equally spaced integers:

\[x_1 = a \]
\[x_2 = a + 1, \]
\[\ldots \]
\[x_n = a + n - 1 = b \]

for some minimum and maximum integer values \(a \) and \(b \).

The expected value and variance are then

\[\mu_X = \frac{a + b}{2} \]
\[\sigma_X^2 = \frac{(b - a + 1)^2 - 1}{12} = \frac{n^2 - 1}{12}. \]
Example: Dice

Discrete uniform distributions have relatively few applications; the simplest is the number of spots shown when a fair die is rolled:

\[a = 1 \]
\[b = 6 \]
\[n = b - a + 1 = 6 \]
\[\mu_X = 3.5 \]
\[\sigma^2_X = 2.916667. \]
Example: Sampling

One way to draw a single item from a finite population of size N is:

- label the items from 1 to N;
- sample X from the discrete uniform distribution on 1, 2, \ldots, N;
- choose the item labeled X.
Binomial Distribution

Suppose that we carry out a sequence of independent Bernoulli trials: simple experiments with only two outcomes, “success” and “failure”, each with the same probability p of success.

Then X, the number of successes after n trials, has a binomial distribution.
Probability mass function

<table>
<thead>
<tr>
<th>$X = 0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$1 - p$</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$(1 - p)^2$</td>
<td>$2p(1 - p)$</td>
<td>p^2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$(1 - p)^3$</td>
<td>$3p(1 - p)^2$</td>
<td>$3p^2(1 - p)$</td>
<td>p^3</td>
</tr>
<tr>
<td>4</td>
<td>$(1 - p)^4$</td>
<td>$4p(1 - p)^3$</td>
<td>$6p^2(1 - p)^2$</td>
<td>$4p^3(1 - p)$</td>
</tr>
</tbody>
</table>

Every entry is $1 - p$ times the entry directly above plus p times the entry above and to the left.

In the n^{th} row, the probabilities are the terms in the binomial expansion

$$[(1 - p) + p]^n = (1 - p)^n + np(1 - p)^{n-1} + \cdots + p^n.$$
In general,

\[f(x; n, p) = P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}, \quad x = 0, 1, \ldots, n, \]

where the binomial coefficient \(\binom{n}{x} \) is

\[\binom{n}{x} = \frac{n!}{x!(n-x)!}. \]
Heuristic

Consider any one way of getting x successes in n trials: $SFF \ldots FS$, with x Ss and $n - x$ Fs;

By independence, the probability of this sequence is

$$p \times (1 - p) \times (1 - p) \times \cdots \times (1 - p) \times p = p^x(1 - p)^{(n-x)};$$

There are $\binom{n}{x}$ ways of arranging x Ss and $n - x$ Fs, so the probability is

$$\binom{n}{x} \times p^x(1 - p)^{(n-x)}. $$
Expected value:

\[\mu_X = np \]

Variance:

\[\sigma^2_X = np(1 - p) \]

Example: Inspection

Suppose the probability that a cell phone camera flash unit fails to conform to specifications is \(p \).

When the production process is in statistical control, units are probabilistically independent.

The number of non-compliant units in a sample of size \(n \) has a binomial distribution.
Geometric Distribution

Consider the same context of a sequence of independent Bernoulli trials. We wait until the first success, and X is the number of that trial.

If the first success is at trial x, it must have been preceded by $x - 1$ failures, so

$$P(X = x) = (1 - p)^{x-1}p, \quad x = 1, 2, \ldots$$

X has a geometric distribution.
Expected value:

\[\mu_X = \frac{1}{p} \]

Variance:

\[\sigma^2_X = \frac{1 - p}{p^2} \]

Example: Inspection

Suppose the probability that a cell phone camera flash unit fails to conform to specifications is \(p \).

If the production process is in statistical control, the number of units that have been inspected when the first non-compliant unit is detected has a geometric distribution.
More generally, we could wait until we have seen \(r \) successes. The number \(X \) of trials up to the \(r^{\text{th}} \) success has a negative binomial distribution.

Probability mass function:

\[
P(X = x) = \binom{x - 1}{r - 1} (1 - p)^{x-r} p^r
\]

Expected value:

\[
\mu_X = \frac{r}{p}
\]

Variance:

\[
\sigma_X^2 = \frac{r(1 - p)}{p^2}
\]
Hypergeometric Distribution

Suppose that a random sample of size n is drawn from a finite population of N items, each of which can be classified as a “Success” or a “Failure”. Assume that there are K successes. The number X of successes in the sample has a hypergeometric distribution.

Example: Acceptance sampling

A sample of 10 items is taken from a shipment of 200 items, of which K are non-compliant; X is the number of non-compliant items in the sample.
The population of size N has $\binom{N}{n}$ possible samples of size n, and taking a “random sample” means that each of them is equally likely to be chosen.

If the sample contains x successes, they could be taken in $\binom{K}{x}$ ways from the K successes in the population.

Also it contains $n - x$ failures which could be taken in $\binom{N-K}{n-x}$ ways from the $N - K$ failures in the population.

So the probability mass function is

$$P(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}, 0 \leq x \leq K \text{ and } 0 \leq n - x \leq N - K.$$
Write \(p = K/N \), the fraction of successes in the population.

Expected value:

\[
\mu_X = np
\]

Variance:

\[
\sigma^2_X = np(1 - p) \left(\frac{N - n}{N - 1} \right)
\]

Note that the expected value has the same expression as for the binomial distribution, and the variance differs from the binomial case in the factor \(\frac{N - n}{N - 1} \), known as the *finite population correction factor*.
Poisson Distribution

Both the binomial distribution and the hypergeometric distribution are used to model counts, but in each case the counts have a definite upper limit of n, the sample size.

Some counts, like the number of defects on a silicon wafer, do not have such an upper bound, and the Poisson distribution is often used as a model.
Probability mass function:

\[P(X = x) = \frac{\theta^x e^{-\theta}}{x!}, \quad x = 0, 1, 2, \ldots \]

Expected value:

\[\mu_X = \theta \]

Variance:

\[\sigma^2_X = \theta \]
The items being counted are often distributed over some region, and the parameter θ is then related to a *rate* of occurrence.

Example: Workplace accidents

The number of accidents in a workplace might be modeled as having a Poisson distribution with

$$\theta = \lambda T,$$

where λ is the rate of occurrence, say in accidents per week, and T is the number of weeks over which accidents were counted.
Example: Yarn defects

The number of defects in a length of yarn might be modeled as having a Poisson distribution with

\[\theta = \lambda T, \]

where \(\lambda \) is the rate of occurrence, say in defects per meter, and \(T \) is the length in meters of yarn inspected.
Example: Paper quality

The number of visible specks in a sample of white paper might be modeled as having a Poisson distribution with

$$\theta = \lambda T,$$

where λ is the rate of occurrence, say in specks per square meter, and T is the area in square meters of paper inspected.
Approximations

We can show that for large N, the hypergeometric pmf

$$P(X = x) = \frac{(K)_x (N-K)_{n-x}}{(N)_n}$$

is approximately the same as the binomial pmf

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

with $p = K/N$.

That is, sampling from a large population is almost the same as sampling from an infinite population.
Also, if n is large and $p = \theta/n$ is small, then the binomial pmf

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

is approximately the same as the Poisson pmf

$$P(X = x) = \frac{\theta^x e^{-\theta}}{x!}$$

Example: Auto insurance

The number of auto insurance policies experiencing claims in a given period is bounded above by the number of policies the insurer has written, but might nevertheless be modeled as having a Poisson distribution.