Inverse Prediction

One use of a regression model

\[E(Y) = \beta_0 + \beta_1 x \]

is to predict \(Y \) for a new \(x, x_0 \).

Sometimes, instead, we observe a new \(y_0 \), and want to make an inference about the new \(x_0 \).

Often \(x \) is expensive to measure, but \(Y \) is cheap; the relationship is determined from a \textit{calibration} dataset.
Because

\[y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0, \]

we can solve for \(x_0 \):

\[x_0 = \frac{y_0 - \beta_0 - \epsilon_0}{\beta_1}. \]

We do not observe \(\epsilon_0 \), but we know that \(E(\epsilon_0) = 0 \).

Similarly, we do not know \(\beta_0 \) and \(\beta_1 \), but we have estimates \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \).
This suggests the estimate

$$\hat{x}_0 = y_0 - \frac{\hat{\beta}_0}{\hat{\beta}_1}.$$

This is known as inverse prediction.

An approximate $100(1 - \alpha)\%$ prediction interval for x_0 is:

$$\hat{x}_0 \pm t_{\alpha/2} \times \frac{s}{\hat{\beta}_1} \times \sqrt{1 + \frac{1}{n} + \frac{(\hat{x} - \bar{x})^2}{SS_{xx}}}.$$
An alternative approach is to fit the inverse regression:

\[x = \gamma_0 + \gamma_1 y + \epsilon. \]

Then use the standard prediction interval

\[\hat{x}_0 \pm t_{\alpha/2} \times s_{x|y} \times \sqrt{1 + \frac{1}{n} + \frac{(y_0 - \bar{y})^2}{SS_{yy}}} \]

where

\[\hat{x}_0 = \hat{\gamma}_0 + \hat{\gamma}_1 y_0. \]

This is not supported by the standard theory, because, in the calibration data, \(x \) is fixed and \(y \) is random.

But it has been shown to work well in practice.