Factorial experimental designs, including fractionally replicated designs, are widely used to screen factors that might affect a quality characteristic.

After the screening step, which is part of process characterization, the next step is usually process optimization (or at least process improvement).
Response Surface Methods

Consider a response variable Y, such as the yield of a chemical process, that is affected by the levels of certain factors, such as reaction temperature (x_1) and reaction time (x_2).

The expected value of Y can be thought of as a function of x_1 and x_2:

$$E(Y) = f(x_1, x_2).$$

Sometimes we may know enough about the chemistry and physics of the process to specify $f(\cdot, \cdot)$, but often it is largely unknown, except that it should change smoothly as x_1 and x_2 change.
Every smooth function can be approximated locally by low-order polynomials:

- **first-order** approximation:

 \[E(Y) \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2; \]

- **second-order** approximation:

 \[E(Y) \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{1,2} x_1 x_2 + \beta_{1,1} x_1^2 + \beta_{2,2} x_2^2. \]
The “response surface method” consists of:

- Choosing initial settings of the important factors;
- Designing and carrying out an experiment in the neighborhood of the initial settings;
- Deciding on and estimating an appropriate approximation;
- Using that approximation to improve the factor settings.
Example: plasma etching process

Recall that two factors (gap, \(x_1 \), and power, \(x_4 \)) were found to be important.

The levels for gap were \(1.0 \pm 0.2 \) cm, and for power were \(300 \pm 25 \) W, both coded as \(\pm 1 \).

Fit the first-order model:

\[
\text{plasma} \leftarrow \text{read.csv("Data/Table-13-15.csv")}
\]
\[
\text{plasmaLm} \leftarrow \text{lm(Rate} \sim \text{A + D, plasma)}
\]
\[
\text{summary(plasmaLm)}
\]

The fitted equation, in coded variables, is

\[
\hat{y} = 776.06 - 50.81x_1 + 153.06x_4.
\]
Examine the response surface in the neighborhood of the design \((x_1 \text{ and } x_4 \text{ between } -1 \text{ and } +1) \):

```r
aGrid <- seq(from = -1, to = 1, length = 40);
dGrid <- aGrid;
yHat <- predict(plasmaLm, expand.grid(A = aGrid, D = dGrid));
yHat <- matrix(yHat, length(aGrid), length(dGrid));
contour(aGrid, dGrid, yHat, xlab = "A", ylab = "D")
# alternatively, a perspective plot:
persp(aGrid, dGrid, yHat)
```

The predicted etch rate increases steadily as \(x_1 \) decreases and \(x_4 \) increases, and will continue to do so outside this neighborhood.
Steepest ascent

To improve the etch rate the most for a given step length, follow the path of steepest ascent.

That is, the changes in x_1 and x_4 should be proportional to their coefficients in the fitted equation, $-50.81 : 153.06$, or approximately $-1 : 3$.

Experiments were carried out by incrementing x_4 by $+1$ from the center point ($x_1 = x_4 = 0$), and decrementing x_1 by -0.33.

Three steps resulted in a satisfactory increase in etch rate, with $x_1 = -1$ (gap = 0.8 cm) and $x_4 = 3$ (power = 375 W).
Second-order response surface

A new experiment was carried out centered at these settings. The unreplicated 2^2 design was supplemented by:

- Replicated center points, at $(0, 0)$;
- Unreplicated axial points, at $(\pm \alpha, 0)$ and $(0, \pm \alpha)$, with $\alpha = \sqrt{2}$.

This is a **central composite design** (CCD); the choice of $\alpha = \sqrt{2}$ makes it a **rotatable design**.

This design allows estimation of the second-order model:

```r
plasmaNew <- read.csv("Data/Table-14-01.csv")
plasmaNewLm <- lm(Rate ~ A * D + I(A^2) + I(D^2), plasmaNew);
summary(plasmaNewLm)
```
Neither x_1^2 nor x_4^2 has a significant coefficient, so a simpler reduced model was fitted, omitting them:

```r
plasmaNewLmReduced <- lm(Rate ~ A * D, plasmaNew);
summary(plasmaNewLmReduced)
```

Use the `anova()` method to compare the models:

```r
anova(plasmaNewLmReduced, plasmaNewLm)
```

The last line allows testing $H_0: \beta_{1,1} = \beta_{2,2} = 0$; the small F-ratio and large P-value mean that we do not reject H_0.
Examine the response surface in the neighborhood of the design (x_1 and x_4 between $-\alpha$ and $+\alpha$):

```
aGrid <- seq(from = -sqrt(2), to = sqrt(2), length = 40);
dGrid <- aGrid;
yHat <- predict(plasmaNewLmReduced, expand.grid(A = aGrid, D = dGrid));
yHat <- matrix(yHat, length(aGrid), length(dGrid));
contour(aGrid, dGrid, yHat, xlab = "A", ylab = "D")
```
The data set contains a second response, Uniformity:

```r
plasmaNewLmUnif <- lm(Uniformity ~ A * D + I(A^2) + I(D^2), plasmaNew);
summary(plasmaNewLmUnif)
```

All coefficients are significant, so no reduced model is considered:

```r
uHat <- predict(plasmaNewLmUnif, expand.grid(A = aGrid, D = dGrid));
uHat <- matrix(uHat, length(aGrid), length(dGrid));
contour(aGrid, dGrid, uHat, xlab = "A", ylab = "D")
```
The ultimate goal was to find settings where the etch rate is between 1100 and 1150, and the uniformity is at most 80:

```r
contour(aGrid, dGrid, yHat, levels = c(1100, 1150));
contour(aGrid, dGrid, uHat, levels = 80, col = "blue", add = TRUE)
```

In case it’s not clear where the conditions are met:

```r
image(aGrid, dGrid,
     ifelse (yHat >= 1100 & yHat <= 1150 & uHat < 80, TRUE, NA),
     col = hsv(0.33, alpha = 0.5), add = TRUE)
```

Settings within the acceptable region would be chosen based on other criteria, such as equipment reliability, etc.