Predicting a New Response

Recall the regression model

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon = \mathbf{x}' \beta + \epsilon, \]

and the estimated mean response at \(\mathbf{x}_0 \):

\[\hat{y}(\mathbf{x}_0) = \mathbf{x}_0' \hat{\beta}. \]

To predict a single new response at \(\mathbf{x}_0 \), we still use \(\hat{y}(\mathbf{x}_0) \) as the best predictor, but the mean squared prediction error is

\[\sigma^2 \left[1 + \mathbf{x}_0' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_0 \right]. \]
So the $100(1 - \alpha)\%$ prediction interval is

$$\hat{y}(x_0) \pm t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 \left[1 + x'_0 (X'X)^{-1} x_0\right]}$$

Note that this is wider than the $100(1 - \alpha)\%$ confidence interval for the mean response at x_0,

$$\hat{y}(x_0) \pm t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 x'_0 (X'X)^{-1} x_0}$$

because the prediction interval must allow for the ϵ in the new response:

new response = mean response + ϵ.
R command

Use predict(..., interval = "prediction"):

```r
predict(viscosityLm, 
    newdata = data.frame(Temperature = 90, CatalystFeedRate = 10), 
    se.fit = TRUE, interval = "prediction")
```

Output

```r
$fit
   fit   lwr   upr
1 2337.842 2301.360 2374.325

$se.fit
[1] 4.192114

$df
[1] 13

$residual.scale
[1] 16.35860
```
The prediction interval is centered at the same value of fit as the confidence interval.

The prediction interval is wider than the confidence interval, because of the variability in a single observation.

Both of these intervals used the default confidence/prediction level of 95%; use `predict(..., level = .99)`, for instance, to change the level.
Regression Diagnostics

Standard residual plots are:
- Qq-plot (probability plot) of residuals;
- Plot residuals against fitted values;
- Plot residuals against regressors;
- Plot (square roots of) absolute residuals against fitted values.

More diagnostics are usually examined after a regression analysis.
Scaled Residuals

Residuals are usually scaled in various ways.

E.g. the *standardized* residual

\[d_i = \frac{e_i}{\sqrt{\hat{\sigma}^2}}, \]

is dimensionless; they satisfy

\[\sum_{i=1}^{n} d_i = 0 \]

and

\[\sum_{i=1}^{n} d_i^2 = n - p. \]
The d_i are therefore “standardized” in an average sense.

But the standard deviation of the i^{th} residual e_i usually depends on i.

So the d_i are not individually standardized.
The hat matrix:

\[\hat{y} = X\hat{\beta} = X(X'X)^{-1}X'y = Hy \]

where \(H = X(X'X)^{-1}X' \) is the hat matrix (so called because it “puts the hat on \(y \”).

So the residuals \(e \) satisfy

\[e = y - \hat{y} = (I - H)y \]

and

\[\text{Cov}(e) = \sigma^2(I - H). \]
So the variance of the i^{th} residual is

$$V(e_i) = \sigma^2 \left(1 - h_{i,i}\right)$$

where $h_{i,i}$ is the i^{th} diagonal entry of \mathbf{H}.

The *studentized* residual is

$$r_i = \frac{e_i}{\sqrt{\hat{\sigma}^2 \left(1 - h_{i,i}\right)}} = \frac{d_i}{\sqrt{(1 - h_{i,i})}}$$

with population mean 0 and variance 1 for each i:

$$E(r_i) = 0, \quad V(r_i) = 1.$$
Cross Validation

Suppose we predict y_i from a data set excluding y_i.

New parameter estimates $\hat{\beta}_{(i)}$.

Predicted value is $\hat{y}(i) = x_i'\hat{\beta}_{(i)}$ and the corresponding residual satisfies

$$e(i) = y_i - \hat{y}(i) = \frac{e_i}{1 - h_{i,i}}.$$

The PRediction Error Sum of Squares statistic (PRESS) is

$$\text{PRESS} = \sum_{i=1}^{n} e_{(i)}^2.$$
Approximate R^2 for prediction:

$$R^2_{\text{prediction}} = 1 - \frac{\text{PRESS}}{SS_T}.$$

E.g. for viscosity example, PRESS = 5207.7, so $R^2_{\text{prediction}} = .891$.

Recall $R^2 = .927$ and $R^2_{\text{adj}} = .916$: $R^2_{\text{prediction}}$ penalizes over-fitting more than does R^2_{adj}.
R function

RsqPred <- function(l) {
 infl <- influence(l)
 PRESS <- sum((infl$wt.res / (1 - infl$hat))^2)
 rsq <- summary(l)$r.squared
 sst <- sum(infl$wt.res^2) / (1 - rsq)
 1 - PRESS / sst
}

RsqPred(lm(Viscosity ~ CatalystFeedRate + Temperature, viscosity))

[1] 0.8906768
One more scaled residual: R-student is like the studentized residual, but σ^2 is estimated \textit{from the data set with y_i excluded}:

$$t_i = \frac{e_i}{\sqrt{S^2_{(i)} (1 - h_{i,i})}}.$$

Under the usual normal distribution assumptions for ϵ_i, R-student has Student’s t-distribution with $n - p - 1$ degrees of freedom.

We can use t-tables to test for outliers.
Leverage and Influence

When the $h_{i,i}$ are not all equal, each observation has its own weight in determining the fit, usually measured by $h_{i,i}$.

Average value of $h_{i,i}$ is always p/n.

Conventionally, if $h_{i,i} > 2p/n$, x_i is a high leverage point.
High leverage points do not mean that a fit is bad, just sensitive to outliers.

Cook’s D_i measures how much the parameter estimates are affected by excluding y_i:

$$D_i = \frac{\left(\hat{\beta}_{(i)} - \hat{\beta}\right)\prime X'X \left(\hat{\beta}_{(i)} - \hat{\beta}\right)}{p \times MS_E}$$

$$= \frac{r_i^2}{p} \times \frac{h_{i,i}}{1 - h_{i,i}} = \frac{e_i^2}{p\hat{\sigma}^2} \times \frac{h_{i,i}}{(1 - h_{i,i})^2}.$$

$D_i > 1 \Rightarrow i^{th}$ observation has high influence.
R commands

```r
cooks.distance(viscosityLm)
max(cooks.distance(viscosityLm))
which.max(cooks.distance(viscosityLm))
```

Output

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.370211e-01</td>
<td>2.328096e-02</td>
<td>4.631904e-02</td>
<td>6.051051e-04</td>
<td>3.033025e-02</td>
<td>2.768744e-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3.718495e-03</td>
<td>9.699079e-02</td>
<td>1.109258e-01</td>
<td>1.108032e-02</td>
<td>3.538676e-01</td>
<td>6.183881e-02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.615253e-02</td>
<td>3.097853e-06</td>
<td>2.331613e-02</td>
<td>4.676090e-03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No \(D_i > 1 \), so no individual data point has too much influence on \(\hat{\beta} \).
The function `influence()` produces:

- hat values $h_{i,i}$ in \hat{h};
- leave-one-out parameter estimate changes $\hat{\beta}_i - \hat{\beta}$ in $\hat{\beta}$;
- leave-one-out standard deviation estimates $S(i)$ in $\hat{\sigma}$;
- ordinary residuals in wt.res.
R command

influence(lm(Viscosity ~ CatalystFeedRate + Temperature, viscosity))

Output

$\hat{\epsilon}$

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0.34950693 & 0.10247249 & 0.17667095 & 0.25108380 & 0.07689010 & 0.26532800 & 0.31935115 \\
8 & 9 & 10 & 11 & 12 & 13 & 14 \\
0.09797056 & 0.14189415 & 0.07989138 & 0.27835739 & 0.09618408 & 0.28948121 & 0.18519842 \\
15 & 16 \\
0.13415273 & 0.15556667 \\
\end{array}
\]
$coefficients$

<table>
<thead>
<tr>
<th></th>
<th>(Intercept)</th>
<th>CatalystFeedRate</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35.63580480</td>
<td>-0.877700039</td>
<td>-0.280170980</td>
</tr>
<tr>
<td>2</td>
<td>-1.33084057</td>
<td>0.376379857</td>
<td>-0.036994601</td>
</tr>
<tr>
<td>3</td>
<td>-14.98857700</td>
<td>-0.086739050</td>
<td>0.184190892</td>
</tr>
<tr>
<td>4</td>
<td>-1.18980912</td>
<td>-0.054701202</td>
<td>0.018255822</td>
</tr>
<tr>
<td>5</td>
<td>-0.72738417</td>
<td>-0.297566252</td>
<td>0.029247965</td>
</tr>
<tr>
<td>6</td>
<td>13.21234005</td>
<td>1.458155876</td>
<td>-0.328860687</td>
</tr>
<tr>
<td>7</td>
<td>-5.74474826</td>
<td>0.151407566</td>
<td>0.043914749</td>
</tr>
<tr>
<td>8</td>
<td>-14.49483414</td>
<td>-0.163180204</td>
<td>0.196756377</td>
</tr>
<tr>
<td>9</td>
<td>17.57548135</td>
<td>-0.970879305</td>
<td>-0.100847328</td>
</tr>
<tr>
<td>10</td>
<td>-3.67591761</td>
<td>0.174935976</td>
<td>0.027899272</td>
</tr>
<tr>
<td>11</td>
<td>-41.98605988</td>
<td>1.943496093</td>
<td>0.264053698</td>
</tr>
<tr>
<td>12</td>
<td>13.80976682</td>
<td>-0.374480138</td>
<td>-0.12507098</td>
</tr>
<tr>
<td>13</td>
<td>-5.86991930</td>
<td>-0.504921342</td>
<td>0.128078772</td>
</tr>
<tr>
<td>14</td>
<td>0.05401898</td>
<td>0.004540686</td>
<td>-0.001024070</td>
</tr>
<tr>
<td>15</td>
<td>11.89223268</td>
<td>-0.325259570</td>
<td>-0.085816755</td>
</tr>
<tr>
<td>16</td>
<td>-1.01518787</td>
<td>-0.192015133</td>
<td>0.029369774</td>
</tr>
</tbody>
</table>
Output, continued

σ

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

wt.res

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.5402553 5 -12.1213615 4 11.9447620 -1.0417083 5 -16.4271831 4 -21.2642561
7 8 9 10 11 12
13 14 15 16
7.1144538 3 0.0944214 2 10.2276690 2 -4.1481587 3
R command

Leverage and Cook’s D_i are shown in the fourth residual plot:

```r
plot(lm(Viscosity ~ CatalystFeedRate + Temperature, viscosity))
```
Testing for Lack of Fit

In regression analysis, t-statistics and F-ratios are computed using

$$s^2 = \text{Mean Square for Residuals}$$

as the estimate of σ^2.

But s^2 is an unbiased estimator of σ^2 only if the model is correctly specified.

If the design has replicated observations, the residual sum of squares can be decomposed into pure error and lack of fit:

$$SS_E = SS_{PE} + SS_{LOF}$$
Example

Problem 10.12

Problem10p12 <- read.table("data/Problem-10-12.txt", header = TRUE)
summary(lm(y ~ x1 + x2, Problem10p12))

Output

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------|----------|------------|-----------|----------|
| (Intercept) | 49.635 | 7.988 | -6.214 | 0.000156 *** |
| x1 | 18.355 | 7.615 | 2.410 | 0.039218 * |
| x2 | 46.116 | 2.887 | 15.975 | 6.52e-08 *** |

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 9.483 on 9 degrees of freedom
Multiple R-squared: 0.9771, Adjusted R-squared: 0.972
F-statistic: 191.8 on 2 and 9 DF, p-value: 4.178e-08
Break down the residual sum of squares by adding `factor(x1):factor(x2)` to the analysis of variance of the model:

```
summary(aov(y ~ x1 + x2 + factor(x1) : factor(x2), Problem10p12))
```

Output

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>1</td>
<td>11552</td>
<td>11552</td>
<td>270.750</td>
</tr>
<tr>
<td>x2</td>
<td>1</td>
<td>22950</td>
<td>22950</td>
<td>537.898</td>
</tr>
<tr>
<td>factor(x1):factor(x2)</td>
<td>6</td>
<td>681</td>
<td>114</td>
<td>2.662</td>
</tr>
<tr>
<td>Residuals</td>
<td>3</td>
<td>128</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Note

Do *not* add this interaction to the formula in `lm()`. It changes the estimated regression coefficients!