Volatility in Several Series

- The various xARCH models provide many ways to model volatility dynamics in a single series.
- Many areas of financial risk involve the joint behavior of several variables.
- Graphs show that volatility typically varies simultaneously across series.
- Individual xARCH models could be fitted to each variable, but would not be linked.
GARCH

- Recall the GARCH model:

 \[y_t = \text{financial variable, such as log-return on some asset} \]

 or perhaps the residual of some variable from an ARIMA model for the conditional mean structure.

- Assume \(y_t = \sigma_t \epsilon_t \), where \(\{\epsilon_t\} \) are independent and follow some fixed distribution (standard normal, standardized \(t \), \ldots).

- GARCH(1, 1):

 \[\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2. \]

- The “standardized residuals” are \(z_t = \hat{\sigma}_t^{-1} y_t \).
Multivariate GARCH

* With several series,

\[y_t = \text{vector of } J \text{ financial variables}. \]

* The analog of

\[\sigma_t^2 = \text{var}(y_t | y_{t-1}, y_{t-2}, \cdots) \]

is

\[\Sigma_t = \text{var}(y_t | y_{t-1}, y_{t-2}, \cdots). \]

* The purpose of a multivariate xARCH model is to provide a recursive expression for \(\Sigma_t \).
PC-GARCH: use PCA.

First stage: fit univariate GARCH models to the individual series.

Put standardized residuals for time t in a vector

$$ z_t = S_{1,t}^{-1} y_t, $$

where $S_{1,t}$ is the diagonal matrix of first stage conditional standard deviations.

Set up a data matrix and use the SVD:

$$ Z = (T \times J) \text{ data matrix with rows } z'_t, t = 1, 2, \ldots, T $$

$$ = \begin{pmatrix} U \\ T \times J \end{pmatrix} \begin{pmatrix} D \\ J \times J, \text{diagonal} \end{pmatrix} \begin{pmatrix} V' \\ J \times J \end{pmatrix} $$
Second stage: fit univariate GARCH models to the PC scores (here columns of U; more conventionally, of UD).

Write

$$\epsilon_t = S^{-1}_{2,t} u_t$$

where $S_{2,t}$ is the diagonal matrix of second stage conditional standard deviations.

Model ϵ_t as:

- $N_J(0, I)$;
- $t_{J,\nu}(0, I)$;
- a meta t-distribution, combining marginal t-distributions and a t-copula, all potentially with different degrees of freedom;
- some other non-Gaussian distribution with chosen tail length, tail dependence, and shape.
The conditional distribution of y_{T+1} is represented as

$$y_{T+1} = S_{1,T+1} z_{T+1}$$

$$= S_{1,T+1} V D u_{T+1}$$

$$= S_{1,T+1} V D S_{2,T+1} \epsilon_{T+1}$$

where:

- V and D come from the SVD;
- $S_{1,T+1}$ and $S_{2,T+1}$ come from the first and second stage GARCH recursions, respectively;
- ϵ_{T+1} follows the chosen model.

Note that the distribution of ϵ_{T+1} does not depend on the past, so it is independent of the past.
If the chosen distribution of ϵ_{T+1} is Gaussian or t, the conditional distribution of y_{T+1} is in the same family.

Otherwise, the conditional distribution of y_{T+1} is likely to be intractable except for simulation.

Either way, use it for instance to compute VaR or ES of a portfolio of the assets on which these are the returns.
Reduced Rank PC-GARCH: recall that if \(d_1^2 + d_2^2 + \cdots + d_k^2 \gg d_{k+1}^2 + \cdots + d_J^2 \) then

\[
Z \approx \begin{pmatrix}
U^{(k)} \\
T \times k
\end{pmatrix}
\begin{pmatrix}
D^{(k)} \\
k \times k, \text{diagonal}
\end{pmatrix}
\begin{pmatrix}
V^{(k)'} \\
k \times J
\end{pmatrix}.
\]

So only \(k \) principal component score series need to be modeled, and \(\epsilon_t \) consists of only \(k \) variables whose distributions need to be modeled.

If \(k \ll J \), modeling is much simplified.
PC-GARCH and Reduced Rank PC-GARCH are related to Orthogonal GARCH (OGARCH) and Generalized Orthogonal GARCH (GO-GARCH).

These model the conditional covariance matrix of \(y_t \) directly:

\[
\Sigma_t = XD_tX'
\]

where \(D_t \) is a diagonal matrix of univariate GARCH conditional variances, and:

- in OGARCH, \(X \) is \((J \times k)\) with orthogonal columns, like \(V^{(k)} \);
- in GO-GARCH, \(X \) is \((J \times J)\) with no orthogonality constraints.

Then \(y_t \) is modeled as Gaussian or \(t \) with covariance matrix \(\Sigma_t \).

Note: PC-GARCH makes \(\Sigma_t \) more complicated:

\[
\Sigma_t = S_{1,t} V D S^2_{2,t} D V' S_{1,t}.
\]
Non-PCA Approaches

- **MGARCH** is a very general extension of univariate GARCH.
- **MGARCH(1, 1):**

\[
\text{vech}(\Sigma_t) = A \text{vech}(y_{t-1}y_{t-1}') + B \text{vech}(\Sigma_{t-1}) + c
\]

where vech(·) vectorizes the lower triangle of a symmetric matrix:

\[
\text{vech}(S) = \begin{bmatrix}
S_{1,1} \\
S_{2,1} \\
\vdots \\
S_{J,1} \\
S_{2,2} \\
\vdots \\
S_{J,J}
\end{bmatrix}
\]
MGARCH is over-parametrized: $\text{vech}(\mathbf{S})$ is $(J(J + 1)/2 \times 1)$. So \mathbf{A} and \mathbf{B} are $((J(J + 1)/2) \times (J(J + 1)/2))$, with $\sim J^4/4$ entries each, and \mathbf{c} is $((J(J + 1)/2) \times 1)$. Constraining Σ_t to be non-negative definite is a challenge.
In **diag-MGARCH**, \(A \) and \(B \) are constrained to be diagonal—some improvement.

Note: diagonal multiplication of \(\text{vech}(\cdot) \) is equivalent to entrywise multiplication:

\[
\Sigma_t = A \circ (y_{t-1}y_{t-1}') + B \circ \Sigma_{t-1} + C
\]

where \(A \), \(B \), and \(C \) are now \((J \times J)\), and “\(\circ \)” denotes entrywise (Hadamard, or Schur) product.

Constraining \(\Sigma_t \) to be non-negative definite is still a challenge: requiring \(A \), \(B \), and \(C \) to be non-negative definite is sufficient, but not necessary.

No “cross-talk” in diag-MGARCH.
BEKK is a different simplified form of MGARCH:

$$\Sigma_t = A'(y_{t-1}y'_{t-1})A + B'\Sigma_{t-1}B + C$$

Here A and B are unrestricted, and C is positive definite symmetric.

Off-diagonal entries in A and B introduce cross-talk: volatility in one variable can flow into another from either the $y_{t-1}y'_{t-1}$ term or the Σ_{t-1} term.
Constant Conditional Correlation (CCC)

- We can always decompose Σ_t:

$$\Sigma_t = D_t R_t D_t,$$

where D_t is the diagonal matrix of conditional standard deviations, and R_t is the conditional correlation matrix.

- In CCC, assume that $R_t = R$, constant.

- Use separate GARCH models to build D_t, and estimate R from the standardized residuals z_t.
Dynamic Conditional Correlation (DCC)

- As in CCC, use separate GARCH models to build D_t.
- Then

$$R_t = (\text{diag}(Q_t))^{-1/2} Q_t (\text{diag}(Q_t))^{-1/2}$$

where Q_t satisfies the recursion

$$Q_t = \theta_1 z_{t-1} z_{t-1}' + \theta_2 Q_{t-1} + (1 - \theta_1 - \theta_2) \bar{Q}.$$

That is, Q_t follows an even simpler MGARCH model with scalar multipliers, but driven by the standardized residuals z_t instead of the original returns y_t.

- R_t simply extracts the correlation structure from Q_t.

Role of the Copula

- In each case, we construct
 \[\Sigma_t = \text{var}(y_t | y_{t-1}, y_{t-2}, \ldots) \].

- Write
 \[\epsilon_t = \Sigma_t^{-1/2} y_t \]
 so that
 \[\text{var}(\epsilon_t) = I_J. \]

- Here \(\Sigma_t^{-1/2} \) could be any inverse square root of \(\Sigma_t \); e.g. triangular (Choleski), symmetric positive definite (spectral decomposition).

- In PC-GARCH, a specific version was implied.
The distribution of ϵ_t might be assumed to be independent normal (with no tail dependence), or multivariate t (with positive tail dependence).

It could alternatively be constructed to have appropriate tail lengths and appropriate tail dependences by separately estimating:

- the marginal distribution of each component of ϵ_t;
- a copula to introduce nonlinear dependence.

Note: if $\Sigma_t^{-1/2}$ is non-sparse, the tail properties of components of ϵ_t affect all the components of y_t.

- The symmetric positive definite version relates each component of y_t most closely to the corresponding component of ϵ_t.