Some Special Cases

- Recall: we can classify models:

 \[
 \text{mean} = \begin{cases}
 \text{constant} \\
 \text{linear in } x_{u-1}, x_{u-2}, \ldots, x_{u-p} \\
 \text{other}
 \end{cases}
 \]

 \[
 \text{variance} = \begin{cases}
 \text{constant} \\
 \text{linear in } x^2_{u-1}, x^2_{u-2}, \ldots, x^2_{u-p} \\
 \text{other}
 \end{cases}
 \]
Autoregressions

- The simplest special case is the autoregression.

- If:

\[\mu_t = \text{linear function of } x_{t-1}, x_{t-2}, \ldots, x_{t-p} \]
\[= \phi_1 x_{t-1} + \phi_2 x_{t-2} + \cdots + \phi_p x_{t-p} \]

and

\[\sigma_t^2 = \text{constant} \]
\[= \tau^2 \]

then \(X_t \) is called autoregressive of order \(p \) (AR(\(p \))).
\begin{itemize}
 \item We usually define
 \begin{align*}
 \epsilon_t &= X_t - \mathbb{E}(X_t \mid X_{t-1}, X_{t-2}, \ldots) \\
 &= X_t - \left(\phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} \right).
 \end{align*}

 \item We then write the model as
 \begin{align*}
 X_t &= \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + \epsilon_t
 \end{align*}
 where
 \begin{align*}
 \mathbb{E}(\epsilon_t \mid X_{t-1}, X_{t-2}, \ldots) &= 0, \\
 \text{and}
 \text{Var}(\epsilon_t \mid X_{t-1}, X_{t-2}, \ldots) &= \tau^2.
 \end{align*}
\end{itemize}
• If in addition the shape of the conditional density is fixed, then the ϵ’s are independent and identically distributed.

• The polynomial

$$\phi(z) = 1 - \left(\phi_1z + \phi_2z^2 + \cdots + \phi_pz^p \right),$$

where we view z as a complex variable, plays an important role in the theory of autoregressions.
• In particular, if the zeros of $\phi(z)$ are outside the unit circle, then:

- $1/\phi(z)$ has a Taylor series expansion

$$\frac{1}{\phi(z)} = 1 + \psi_1 z + \psi_2 z^2 + \ldots$$

which converges for $|z| \leq 1$;

- X_t is a linear combination of $\epsilon_t, \epsilon_{t-1}, \ldots$:

$$X_t = \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \ldots$$
• These equations are often written in terms of the \textit{back-shift operator} B, defined by
\[BX_t = X_{t-1}, \quad B\epsilon_t = \epsilon_{t-1}, \quad \ldots \]

• Then
\[
\epsilon_t = X_t - \left(\phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} \right) \\
= X_t - \left(\phi_1 BX_t + \phi_2 B^2 X_t + \cdots + \phi_p B^p X_t \right) \\
= \phi(B)X_t.
\]
• So it is natural to write

\[X_t = \frac{1}{\phi(B)} \epsilon_t \]

\[= \left(1 + \psi_1 B + \psi_2 B^2 + \ldots \right) \epsilon_t \]

\[= \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \ldots \]
Conditional Heteroscedasticity: ARCH

- Another special case is Engle’s AutoRegressive Conditionally Heteroscedastic, or ARCH, model.

- If

 \[\mu_t = \text{constant} \]

 and

 \[\sigma_t^2 = \text{linear function of } x_{t-1}^2, x_{t-2}^2, \ldots, x_{t-q}^2 \]

 \[= \omega + \alpha_1 x_{t-1}^2 + \alpha_2 x_{t-2}^2 + \cdots + \alpha_q x_{t-q}^2 \]

 then \(X_t \) is called AutoRegressive Conditionally Heteroscedastic of order \(q \) (ARCH(\(q \))).
ARCH models are important in finance, because many financial time series show variances that fluctuate over time, while usually having constant, essential zero, conditional means.
A Modest Generalization

- In practice, large values of p or q are sometimes needed to get a good fit with the AR(p) and ARCH(q) models.

- That introduces many parameters to be estimated, which is problematic.

- We need models that allow large p with few parameters.
• Suppose for instance that

\[X_t = \theta X_{t-1} - \theta^2 X_{t-2} - \cdots + \epsilon_t \]

for some \(\theta, -1 < \theta < 1 \).

• That is, \(p = \infty \), but \(\phi_r = -(-\theta)^r \Rightarrow \) only one parameter, \(\theta \).

• Then

\[\epsilon_t = X_t - \theta X_{t-1} + \theta^2 X_{t-2} + \cdots = \frac{1}{1 + \theta B} X_t, \]

or

\[X_t = (1 + \theta B)\epsilon_t = \epsilon_t + \theta \epsilon_{t-1}. \]
• This is called a *Moving Average* model; specifically, the first-order Moving Average, MA(1).

• The general MA(q) model has q terms:

\[
X_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \cdots + \theta_q \epsilon_{t-q} \\
= (1 + \theta_1 B + \theta_2 B^2 + \cdots + \theta_q B^q) \epsilon_t \\
= \theta(B) \epsilon_t.
\]
• We can mix AR and MA structure:

\[X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \cdots + \theta_q \epsilon_{t-q} \]

or

\[X_t - \left(\phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} \right) = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \cdots + \theta_q \epsilon_{t-q} \]

or

\[\phi(B) X_t = \theta(B) \epsilon_t. \]

• This is the AutoRegressive Moving Average model of order \((p, q)\) (ARMA\((p, q)\)).
Integrated Models

- Sometimes we cannot find an ARMA(p,q) that fits the data for reasonably small order p and q.

- For instance, a random walk

$$X_t = X_{t-1} + \epsilon_t$$

is like an AR(1) but with $\phi = 1$.

- But the \textit{first differences} $X_t - X_{t-1}$ are simple:

$$X_t - X_{t-1} = \epsilon_t$$

a trivial model with $p = q = 0$.
• More generally, we might find that $X_t - X_{t-1}$ is ARMA(p, q).

• More generally yet, we might have to difference X_t more than once.

• Note that

$$X_t - X_{t-1} = (1 - B)X_t.$$

• Define the d^{th} difference by $(1 - B)^dX_t$, $d = 1, 2, \ldots$.

• If the d^{th} difference of X_t is ARMA(p, q), we say that X_t is AutoRegressive Integrated Moving Average of order (p, d, q) (ARIMA(p, d, q)).