Indicator Variables for Seasonal Time Series

- A simple way to estimate seasonal effects in a time series; e.g., for quarterly data:
 - Set up four indicator ("dummy") variables, one for each quarter;
 - Use them as inputs in a regression model.

- Similarly for monthly data: twelve monthly indicators.
• In R, you can create the indicators manually.
 – E.g., for a series \(x \), Shumway and Stoffer suggest essentially:
 \[
 Q_1 = \text{rep}(\text{c}(1, 0, 0, 0), \text{length}(x) / 4)
 \]
 etc.

• You can then use \texttt{lm()} to fit the regression;
 – E.g., for the Johnson & Johnson quarterly earnings, fitting a linear trend and the quarterly indicators:
 \[
 \text{summary(lm(log(jj) \sim \text{time(jj)} + Q_1 + Q_2 + Q_3 + Q_4))}
 \]

• For a monthly series, this would be tedious.
R has some tools that can help:

- If \(x \) is a seasonal time series (i.e., \(\text{frequency}(x) > 1 \)), \(\text{cycle}(x) \) creates a companion time series whose value is the corresponding season.

- E.g. \(\text{cycle}(jj) \):

<table>
<thead>
<tr>
<th>Qtr1</th>
<th>Qtr2</th>
<th>Qtr3</th>
<th>Qtr4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1961</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1962</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Actually, \(x \) does not need to be seasonal, but if \(\text{frequency}(x) == 1 \) then all the values are 1.
• The time series `cycle(x)` has quantitative values:
  ```r
  plot(cycle(jj), xlim = c(1960, 1965))
  ```
• If you create a `factor()` from this time series and include it in the regression, `lm()` will see that it is a factor, and create one indicator variable for each level.

 – E.g., for the Johnson & Johnson quarterly earnings, fitting a linear trend and the quarterly indicators:

    ```r
    Q = factor(cycle(jj))
    summary(lm(log(jj) ~ time(jj) + Q))
    ```

 gives (almost) the same output as if you used `Q1`, `Q2`, `Q3`, and `Q4`.

 – The difference is that when the model includes an intercept, one indicator needs to be omitted; for a factor, the first indicator is omitted, but for an explicit list of variables, the last is omitted.
Lagged Variables

- Time series models often include lagged variables.

- You can use the R function `lag()` to construct them.

- For example (using just the first five quarters' earnings):

```r
> x = window(jj, end = 1961)
> x

   Qtr1 Qtr2 Qtr3 Qtr4
1960 0.71 0.63 0.85 0.44
1961 0.61
```
> lag(x, k = -1)

 Qtr1 Qtr2 Qtr3 Qtr4
1960 0.71 0.63 0.85
1961 0.44 0.61

- Note that \(\text{lag}(x, k = -1) \) contains the same five values as \(x \), but associated with different times.

 - For instance, the value 0.44 of \(\text{lag}(x, k = -1) \) for the first quarter of 1961 is 1960's fourth quarter earnings (from \(x \)).

- The default is \(k = 1 \), which changes the times the wrong way for most applications.
• Many R functions use the time structure of a series to “do the right thing”.

• For example, `plot(lag(x, -1), x, xy.labels = FALSE)` plots each quarter’s earnings against the previous quarter’s:
• Some functions do not (\texttt{lm()}, \texttt{lowess()}).

• For these, you must first line up the data correctly, e.g., using \texttt{cbind()}:

\begin{verbatim}
> y = cbind(x, lagx = lag(x, -1))
> y
 x lagx
1960 Q1 0.71 NA
1960 Q2 0.63 0.71
1960 Q3 0.85 0.63
1960 Q4 0.44 0.85
1961 Q1 0.61 0.44
1961 Q2 NA 0.61
\end{verbatim}
• For example, if you wanted to include the prior quarter’s earnings into the regression for log earnings:

```r
jjdata = cbind(ljj = log(jj),
               tjj = time(jj),
               cjj = cycle(jj),
               lagljj = log(jj, -1))
jjdata = data.frame(jjdata)
jjdata$Q = factor(jjdata$cjj)
summary(lm(ljj ~ tjj + Q + lagljj, data = jjdata))
```

• If you just include `lag(log(jj), -1)` in the original model, you get a very different result (try it!).