Comparing Means

• Many statistical analyses involve comparing mean responses made under different conditions.

• Sometimes the comparisons are *within* subjects:

 – E.g. blood pressure and temperature after exercise, compared with same before exercise, for the same subject.

• Sometimes *between* subjects:

 – E.g. blood pressure and temperature after exercise for a group of athletes, compared with same for a group of couch potatoes.
• Some problems will have both *within-subjects* factors and *between-subjects* factors.

 – E.g. blood pressure and temperature... (fill in as an exercise!).

• We begin with experiments involving only within-subjects factors...
Paired Comparisons

- Recall univariate paired comparisons:

 - $X_{j,i} =$ measurement on unit j, $1 \leq j \leq n$, for treatment i, $i = 1, 2$.

 - Analysis is based on $D_j = X_{j,1} - X_{j,2}$, through their summary statistics \bar{D} and s_d.

 - The hypothesis $H_0 : \mathbb{E}(D) = \delta$ is tested using

 $$t = \frac{\bar{D} - \delta}{s_d/\sqrt{n}}$$

 and a confidence interval for δ is

 $$\bar{D} \pm t_{n-1}(\alpha/2)\frac{s_d}{\sqrt{n}}.$$
• Multivariate extension:

 – $X_{i,j,k}$ = measurement of variable k, $1 \leq k \leq p$, on unit j, $1 \leq j \leq n$, for treatment i, $i = 1, 2$.

 – The p differences for each unit $D_{j,k} = X_{1,j,k} - X_{2,j,k}$ make a multivariate response \mathbf{D} with summary statistics $\bar{\mathbf{D}}$ and S_d.

• The hypothesis $H_0 : \mathbf{E}(\mathbf{D}) = \delta$ is tested using

\[
T^2 = n \left(\bar{\mathbf{D}} - \delta \right)' S_d^{-1} \left(\bar{\mathbf{D}} - \delta \right)
\]
• Reducing the data to the differences \mathbf{D} makes this problem the same as making inferences about the mean of a single sample:

 – The distribution of T^2 under H_0 is:
 \[
 \frac{(n - p)}{(n - 1)p} T^2 \sim F_{p, n-p},
 \]
 so we reject H_0 at level α if
 \[
 T^2 > \frac{(n - 1)p}{(n - p)} F_{p, n-p}(\alpha).
 \]
 – Confidence statements about δ are made as before.
• Example: wastewater treatment plant effluent:

 - \(n = 11 \) samples of wastewater;

 - \(p = 2 \) variables, Biochemical Oxygen Demand and Suspended Solids;

 - 2 “treatments” are two labs being compared, one Commercial and one State.

 - For each sample, a total of \(q = 4 \) measurements.

• SAS \texttt{proc glm} and \texttt{proc reg} program and output.
Comparing More Than Two Treatments

- Example: anesthetic test with dogs ($q = 4$ responses).
 - The 4 responses are the same physical measurement (milliseconds between heart beats) under 4 different experimental conditions:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CO₂</th>
<th>Halothane</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>without</td>
</tr>
<tr>
<td>2</td>
<td>low</td>
<td>without</td>
</tr>
<tr>
<td>3</td>
<td>high</td>
<td>with</td>
</tr>
<tr>
<td>4</td>
<td>low</td>
<td>with</td>
</tr>
</tbody>
</table>

- This is a repeated measures design.
• We need to test various hypotheses:

 – No difference among treatments: \(\mu_1 = \mu_2 = \mu_2 = \mu_4 \).

 – If we reject that null hypothesis, we will test main effects of \(\text{CO}_2 \) and Halothane, and their interaction.

• Each hypothesis can be written in the form

 \[H_0 : C\mu = 0 \]

 for an appropriate \(q' \times q \) matrix \(C \).
• For example, the hypothesis $\mu_1 = \mu_2 = \mu_2 = \mu_4$ can be written

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

with $q' = 3$.

• The main effect of Halothane, for example, is estimated by

$$(\mu_3 + \mu_4) - (\mu_1 + \mu_2) = [-1, -1, 1, 1] \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{bmatrix}$$

with $q' = 1$.
For each such hypothesis, the statistic
\[T^2 = n(C\bar{x})'(CSC')^{-1}(C\bar{x}) \]
is the appropriate Hotelling's \(T^2 \) test statistic, and under \(H_0 \),
\[\frac{(n - q')}{(n - 1)q'} T^2 \sim F_{q',n-q'}, \]

- SAS proc glm program and output.