Principal Components

- Often, a multivariate response has relatively few dominant *modes of variation*.

- E.g. length, width, and height of turtle shells: overall size is a dominant mode of variation, making all three responses larger or smaller simultaneously.

- Principal components analysis (PCA) explores modes of variation suggested by a variance-covariance matrix.
• Identifying the modes of variation can lead to:

 – new insights and interpretation;

 – reduction in dimensionality and collinearity.

• Often used to prepare data for further analysis, e.g. in regression analysis (Principal Components Regression).
• Basic idea: find linear combinations of responses that have most of the variance.

• More precisely: given \(X \) with \(E(X) = 0 \) and \(\text{Cov}(X) = \Sigma \), find \(a_1 \) to maximize \(\text{Var}(a_1'X) \), subject to \(a_1'a_1 = 1 \).

• Notes:

 – \(a_1 \) must be constrained, otherwise the variance could be made arbitrarily large just by making \(a_1 \) large.

 – Why this constraint? Because the problem has a convenient solution.
Solution:

\[\text{Var}(a'_1 X) = a'_1 \Sigma a_1, \]

which is maximized at \(a_1 = e_1 \), the first eigenvector of \(\Sigma \);

The maximized value is \(\lambda_1 \), the associated eigenvalue.

Often, the elements of \(e_1 \) are all positive and similar in magnitude \(\Rightarrow \) a mode in which all responses vary together:

- not often interesting;

- a useful summary or composite variable.
• What about other modes of variation? Johnson & Wichern: find a_2 to maximize $\text{Var}(a'_2X)$, subject to:

- $a'_2a_2 = 1$;
- $\text{Cov}(a'_1X, a'_2X) = 0$.

• Solution:

- $a_2 = e_2$, the second eigenvector of Σ;
- The maximized value is λ_2, the associated eigenvalue.

• Similarly modes 3, 4, . . . , p.
Alternative Approach: Data Compression

- Observer sees X but communicates only $Y = a'X$.

- Receiver uses $X^* = bY$ to approximate X.

- Error is $X - X^* = (I - ba')X$.

- Error covariance matrix is $\text{Cov}(X - X^*) = (I - ba')\Sigma(I - ab')$.

- *Total* error variance is
 \[
 \text{trace}[\text{Cov}(X - X^*)] = \text{trace}(\Sigma) - a'\Sigma b - b'\Sigma a + b'ba'\Sigma a.
 \]
• For a given b, total error variance is minimized by

$$a = \frac{b}{b'bb'}.$$

• Minimum for a given b is

$$\text{trace}(\Sigma) - b'\Sigma b \frac{b'}{b'b}.$$

• Best b is e_1, and then best $a = e_1$ also.

• Best (i.e., minimum) total error variance is

$$\text{trace}(\Sigma) - \lambda_1 = \lambda_2 + \lambda_3 + \cdots + \lambda_p.$$
Higher dimensions: suppose observer can communicate \(Y = (Y_1, Y_2)' = A'X \), and receiver uses \(X^* = BY \) to approximate \(X \).

Similar math: best \(A = B = (e_1, e_2) \), with total error

\[
\text{trace}(\Sigma) - \lambda_1 - \lambda_2 = \lambda_3 + \lambda_4 + \cdots + \lambda_p.
\]

Similarly for \(k \) channels, \(k < p \): proportion of total variance “explained” (i.e., communicated) is

\[
\frac{\lambda_1 + \lambda_2 + \cdots + \lambda_k}{\lambda_1 + \lambda_2 + \cdots + \lambda_k + \lambda_{k+1} + \cdots + \lambda_p}.
\]