Discrimination and Classification

• Goals:

Discrimination: finding the features that *separate* known groups in a multivariate sample.

Classification: developing a rule to *allocate* a new object into one of a number of known groups.

• A classification rule is based on the features that separate the groups, so the goals overlap.
Simplest Case: Two Groups

- Both discrimination and classification depend on multivariate observation X.

- Basic setup:
 - Consider each group a population: π_1 and π_2.
 - The density of X in π_g is $f_g(x)$, $g = 1, 2$.
• Alternatively:

 – A single population with a group indicator G.
 – The density of X given $G = g$ is $f_g(x)$.
 – $P(G = 1) = p_1$, $P(G = 2) = p_2 = 1 - p_1$.

• p_1 and p_2 are the prior probabilities of the groups.
• Example: ownership of a riding mower.
• Classification problem is to predict whether a homeowner owns a riding mower, given the Income and Lot Size.

• Rule must give an answer for any x, so it defines two regions R_1 and R_2.

• Classification errors:

\[P(2|1) = P(X \in R_2|G = 1) = \int_{R_2} f_1(x)dx, \]

\[P(1|2) = P(X \in R_1|G = 2) = \int_{R_1} f_2(x)dx. \]
• Unconditionally:

\[
P \text{ (correctly classified as } \pi_1) = P(1|1)p_1
\]

\[
P \text{ (missclassified as } \pi_1) = P(1|2)p_2
\]

\[
P \text{ (correctly classified as } \pi_2) = P(2|2)p_2
\]

\[
P \text{ (missclassified as } \pi_2) = P(2|1)p_1
\]

• The two types of classification error may have different costs:

\[
\begin{array}{ccc}
\text{Classify as:} & \pi_1 & \pi_2 \\
\hline
\text{True population:} & \pi_1 & 0 & c(2|1) \\
& \pi_2 & c(1|2) & 0
\end{array}
\]
• **Expected Cost of Misclassification:**

\[
ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2.
\]

• The classification region that minimizes ECM is

\[
R_1 : \frac{f_1(x)}{f_2(x)} \geq \left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_2}{p_1} \right).
\]

• Note: these regions depend on the ratios of:

 – the densities;

 – the costs of misclassification;

 – the prior probabilities.
• Special cases:

 – *Total Probability of Misclassification*:

 \[\text{TPM} = P(\text{misclassify either way}) = P(2|1)p_1 + P(1|2)p_2 \]

 is ECM with \(c(1|2) = c(2|1) = 1\).

 – Posterior mode: allocate to the population with the higher posterior probability; by Bayes’s rule:

 \[
 P(\pi_1|x_0) = \frac{p_1 f_1(x_0)}{p_1 f_1(x_0) + p_2 f_2(x_0)} \\
 P(\pi_2|x_0) = \frac{p_2 f_2(x_0)}{p_1 f_1(x_0) + p_2 f_2(x_0)}
 \]

 \(\Rightarrow\) same rule as minimizing TPM.
Multivariate Normal Populations

- If $f_1(x)$ and $f_2(x)$ are multivariate normal with the same Σ and means μ_1 and μ_2, then the minimum-ECM allocation rule is based on a linear function of x.

- Basic result is

$$\ln \left[\frac{f_1(x)}{f_2(x)} \right] = (\mu_1 - \mu_2)' \Sigma^{-1} \left[x - \frac{1}{2} (\mu_1 + \mu_2) \right]$$

- Optimal region is

$$R_1 : \ (\mu_1 - \mu_2)' \Sigma^{-1} \left[x - \frac{1}{2} (\mu_1 + \mu_2) \right] \geq \ln \left[\left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_2}{p_1} \right) \right].$$
• Typically, Σ, μ_1 and μ_2 are unknown, but replaced with sample estimates, based on training data.

• Example: Hemophilia A carriers.

 – Women subjects in two groups: Non-carriers and Obligatory carriers.

 – Variables:

 \[
 X_1 = \log_{10}(\text{AHF activity}) \\
 X_2 = \log_{10}(\text{AHF-like antigen})
 \]

• SAS proc discrim program and output.
Evaluating Classification Functions

• The Optimum Error Rate is the minimum TPM.

• For multivariate normal populations,

\[\text{OER} = 1 - \Phi \left(\frac{\Delta}{2} \right), \]

where \(\Delta^2 \) is the Generalized Squared Distance between groups:

\[\Delta^2 = (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 - \mu_2). \]

• For the hemophilia example, SAS reports \(\Delta^2 = 4.57431 \), whence \(\text{OER} = 0.1424 \).
• The OER calculation is the *estimated* error rate for allocation using the *true* parameters—good in large samples, but dubious in small samples.

• Sample-based evaluation:

 – *Apparent Error Rate* = fraction of training data that are misclassified; reported by SAS as “Resubstitution Summary”; APER = 0.1389 for the example; under-estimates error rate, because the data used to develop the rule are then used to evaluate it;

 – Lachenbruch’s holdout procedure: omit one observation at a time, recalculate the classification rule, and classify the omitted observation; reported by SAS as “Cross-validation Summary”, 0.1556 for the example.
Quadratic Classification

- If $f_1(x)$ and $f_2(x)$ are multivariate normal with different covariances Σ_1 and Σ_2 and means μ_1 and μ_2, then the minimum-ECM allocation rule is based on a quadratic function of x.

- Classification regions are now bounded by conic sections (generally elliptical or hyperbolic).

- No simple explicit representation.
• In `proc discrim`, use `pool = no` on the `proc` statement.

• For the AHF example, the resubstitution Total error rate is 0.1389 and the cross-validated Total error rate is 0.1722.

• The cross-validated Total error rate is higher than for linear classification, suggesting that the estimation cost of the additional parameters in the two Σ’s outweighs their value in improving the fit.
Nonparametric Classification

- One alternative to the multivariate normal assumption is classification based on nonparametric density estimates of $f_g(x)$.

- In SAS, use `method = npar` on the `proc discrim` statement. You have the choice of nearest neighbor and kernel estimation:
 - for nearest neighbor estimation, use `k = ...` to specify the number of neighbors;
 - for kernel estimation, use `kernel = ...` to name a kernel, and `r = ...` to specify the radius (bandwidth).