Admissibility

Consider estimators \(\mathbf{m} \) and \(\mathbf{m}^* \) of \(\mu \):

- The sum-of-squared-errors loss function is
 \[
 L(\mu, \mathbf{m}) = (\mathbf{m} - \mu)'(\mathbf{m} - \mu) = \|\mathbf{m} - \mu\|^2.
 \]

- The risk function \(R(\mu, \mathbf{m}) \) is the expected loss:
 \[
 R(\mu, \mathbf{m}) = \mathbb{E}_\mu[L(\mu, \mathbf{m})]
 \]

- \(\mathbf{m}^* \) is as good as \(\mathbf{m} \) if
 \[
 \forall \mu, R(\mu, \mathbf{m}^*) \leq R(\mu, \mathbf{m})
 \]

- \(\mathbf{m}^* \) is better than \(\mathbf{m} \) if it is as good, and
 \[
 \exists \mu, R(\mu, \mathbf{m}^*) < R(\mu, \mathbf{m})
 \]

- \(\mathbf{m} \) is admissible if there is no \(\mathbf{m}^* \) that is better than \(\mathbf{m} \).
Bayes estimation

- If \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N \) is a random sample from \(\mathcal{N}_p(\mu, \Sigma) \), and \(\mu \) has the prior distribution \(\mathcal{N}_p(\nu, \Phi) \), then the posterior distribution of \(\mu \) is multivariate normal with mean

\[
\Phi \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \bar{x} + \frac{1}{N} \Sigma \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \nu
\]

and covariance matrix

\[
\Phi - \Phi \left(\Phi + \frac{1}{N} \Sigma \right)^{-1} \Phi
\]

- The posterior mean of \(\mu \) is “a kind of weighted average of \(\bar{x} \) and \(\nu \).”
The posterior mean minimizes the expected risk

\[r(\nu, \Phi, m) = \mathbb{E}_{\nu, \Phi}[R(\mu, m)] \]

and is called the \textit{Bayes estimator}.

- Any Bayes estimator is admissible.
- Any admissible estimator is a Bayes estimator, or the limit of Bayes estimators.

An estimator \(m \) is \textit{minimax} if

\[\sup_{\mu} R(\mu, m) = \inf_{m^*} \sup_{\mu} R(\mu, m^*) \]

\(\bar{x} \) is minimax.
Improved Estimation of the Mean Vector

As an estimator of \(\mu \) in a random sample of \(N \) from \(N_p(\mu, \Sigma) \), \(\bar{x} \) is:

- the maximum likelihood estimate;
- minimum variance unbiased;
- equivariant: \(A\bar{x} + b = A\bar{x} + b \).

But it is not admissible with respect to sum-of-squared-errors loss, when \(\Sigma \propto I_p \) and \(p \geq 3 \).
The James-Stein estimator:

- Take $\Sigma = N I_p$, so that $\bar{X} \sim N_p(\mu, I_p)$.
- Then $E[L(\mu, \bar{X})] = p$.
- Now for any fixed ν, let

$$m(\bar{x}) = \left(1 - \frac{p - 2}{||\bar{x} - \nu||^2}\right)(\bar{x} - \nu) + \nu$$

- This estimator shrinks \bar{x} toward the arbitrary ν.
- If $p \geq 3$, $m(\bar{x})$ is better than \bar{x}, proving that \bar{x} is not admissible.
Note that if \(||\bar{x} - \nu||^2 = p - 2 \), \(m(\bar{x}) = \nu \); that is, the shrinkage has gone all the way from \(\bar{x} \) to \(\nu \).

If \(||\bar{x} - \nu||^2 < p - 2 \), the “shrinkage” goes beyond \(\nu \).

A more sensible estimator is

\[
m^+(\bar{x}) = \left(1 - \frac{p - 2}{||\bar{x} - \nu||^2} \right)^+ (\bar{x} - \nu) + \nu
\]

where \((x)^+\) denotes the \textit{positive part} of \(x \):

\[
(x)^+ = \begin{cases}
 x & x \geq 0 \\
 0 & x < 0
\end{cases}
\]

- \(m^+(\bar{x}) \) is better than \(m(\bar{x}) \).
- \(m^+(\bar{x}) \) is minimax.
- But \(m^+(\bar{x}) \) is also not admissible.