Often, a multivariate response has relatively few dominant *modes of variation*.

E.g. length, width, and height of turtle shells: overall size is a dominant mode of variation, making all three responses larger or smaller simultaneously.

Principal components analysis (PCA) explores modes of variation suggested by a variance-covariance matrix.
Identifying the modes of variation can lead to:
- new insights and interpretation;
- reduction in dimensionality and collinearity.

Often used to prepare data for further analysis, e.g. in regression analysis (Principal Components Regression).
Basic idea: find linear combinations of responses that have most of the variance.

More precisely: given \mathbf{X} with $\mathbb{E}(\mathbf{X}) = \mathbf{0}$ and $\text{Cov}(\mathbf{X}) = \mathbf{\Sigma}$, find \mathbf{a}_1 to maximize $\text{Var}(\mathbf{a}_1^\prime \mathbf{X})$, subject to $\mathbf{a}_1^\prime \mathbf{a}_1 = 1$.

Notes:
- \mathbf{a}_1 must be constrained, otherwise the variance could be made arbitrarily large just by making \mathbf{a}_1 large.
- Why this constraint? Because the problem has a convenient solution.
Solution:

\[\text{Var} \left(a_1' X \right) = a_1' \Sigma a_1, \]

which is maximized at \(a_1 = e_1 \), the first eigenvector of \(\Sigma \);

The maximized value is \(\lambda_1 \), the associated eigenvalue.

Often, the elements of \(e_1 \) are all positive and similar in magnitude \(\Rightarrow \) a mode in which all responses vary together:

- not often interesting;
- a useful summary or \textit{composite} variable.
What about other modes of variation? Find a_2 to maximize $\text{Var}(a'_2 X)$, subject to:

- $a'_2 a_2 = 1$;
- $\text{Cov}(a'_1 X, a'_2 X) = 0$.

Solution:

- $a_2 = e_2$, the second eigenvector of Σ;
- The maximized value is λ_2, the associated eigenvalue.

Similarly modes 3, 4, ..., p.
Alternative Approach: Data Compression

- Observer sees \(\mathbf{X} \) but communicates only \(Y = a'\mathbf{X} \).
- Receiver uses \(\mathbf{X}^* = \mathbf{b}Y \) to approximate \(\mathbf{X} \).
- Error is \(\mathbf{X} - \mathbf{X}^* = (\mathbf{I} - \mathbf{ba}')\mathbf{X} \).
- Error covariance matrix is \(\text{Cov}(\mathbf{X} - \mathbf{X}^*) = (\mathbf{I} - \mathbf{ba}')\Sigma(\mathbf{I} - \mathbf{ab}') \).
- Total error variance is

\[
\text{trace}[\text{Cov}(\mathbf{X} - \mathbf{X}^*)] = \text{trace}(\Sigma) - a'\Sigma b - b'\Sigma a + b'ba'\Sigma a.
\]
For a given b, total error variance is minimized by

$$a = \frac{b}{b'b}.$$

Minimum for a given b is

$$\text{trace} (\Sigma) - \frac{b' \Sigma b}{b'b}.$$

Best b is e_1, and then best $a = e_1$ also.

Best (i.e., minimum) total error variance is

$$\text{trace} (\Sigma) - \lambda_1 = \lambda_2 + \lambda_3 + \cdots + \lambda_p.$$
Higher dimensions: suppose observer can communicate
\[Y = (Y_1, Y_2)' = A'X, \] and receiver uses
\[X^* = BY \] to approximate \(X \).

Similar math: best \(A = B = (e_1, e_2) \), with total error
\[
\text{trace}(\Sigma) - \lambda_1 - \lambda_2 = \lambda_3 + \lambda_4 + \cdots + \lambda_p.
\]

Similarly for \(k \) channels, \(k < p \): proportion of total variance “explained” (i.e., communicated) is
\[
\frac{\lambda_1 + \lambda_2 + \cdots + \lambda_k}{\lambda_1 + \lambda_2 + \cdots + \lambda_k + \lambda_{k+1} + \cdots + \lambda_p}.
\]
Scaling in PCA

- Recall: PCA is the solution to a data compression problem, where “error” is quantified by total error variance.
- Question: is “total variance” appropriate?
- Variables in different units must be scaled.
- Variables in the same units but with very different variances are usually scaled.
Simplest scaling: divide each variable by its standard deviation ⇒ covariances are *correlations*.

In other words: use eigen structure of *correlation* matrix R, not *covariance* matrix Σ.
PCA for some Special Cases

- Diagonal matrix: if

\[\Sigma = \begin{bmatrix}
\sigma_{1,1} & 0 & \cdots & 0 \\
0 & \sigma_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{p,p}
\end{bmatrix} \]

then the principal components are just the original variables.
Compound symmetry: if

\[\Sigma = \begin{bmatrix} \sigma^2 & \rho \sigma^2 & \ldots & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 & \ldots & \rho \sigma^2 \\ \vdots & \vdots & \ddots & \vdots \\ \rho \sigma^2 & \rho \sigma^2 & \ldots & \sigma^2 \end{bmatrix} \]

then (if \(\rho > 0 \)):

- \(\lambda_1 = 1 + (p - 1) \rho \) and \(\mathbf{e}_1 = p^{-1/2} (1, 1, \ldots, 1)' \);
- \(\lambda_k = 1 - \rho, \ k > 1; \)
- \(\mathbf{e}_2, \mathbf{e}_3, \ldots, \mathbf{e}_p \) are an arbitrary basis for the rest of \(\mathbb{R}^p \).
- If \(\rho < 0 \) the order is reversed, but note that \(\rho \) must satisfy \(1 + (p - 1) \rho \geq 0 \Rightarrow \rho \geq -1/(p - 1) \).
Principal Components

- Time series (1^{st} order autoregression):

\[
\Sigma = \begin{bmatrix}
\sigma^2 & \phi \sigma^2 & \ldots & \phi^{p-1} \sigma^2 \\
\phi \sigma^2 & \sigma^2 & \ldots & \phi^{p-2} \sigma^2 \\
\vdots & \vdots & \ddots & \vdots \\
\phi^{p-1} \sigma^2 & \phi^{p-2} \sigma^2 & \ldots & \sigma^2
\end{bmatrix}
\]

- No closed form, but for large p the eigen vectors are like sines and cosines.
Sample PCA

- Essentially the eigen analysis of S (or R):

\[S\hat{e}_k = \hat{\lambda}_k \hat{e}_k, \]

and

\[\hat{y}_k = X_{\text{dev}} \hat{e}_k, \]

where

\[X_{\text{dev}} = X - \frac{1}{n}11'X = \left(I - \frac{1}{n}11'\right)X \]
Note:

\[S = \frac{1}{n-1} \mathbf{X}_{\text{dev}}' \mathbf{X}_{\text{dev}} = \left(\frac{1}{\sqrt{n-1}} \mathbf{X}_{\text{dev}} \right)' \left(\frac{1}{\sqrt{n-1}} \mathbf{X}_{\text{dev}} \right) \]

Singular value decomposition:

\[\frac{1}{\sqrt{n-1}} \mathbf{X}_{\text{dev}} = \mathbf{U} \mathbf{D} \mathbf{V}' \]

where \(\mathbf{U} \) and \(\mathbf{V} \) have orthonormal columns and \(\mathbf{D} \) is diagonal (but may not be square).

The diagonal entries of \(\mathbf{D} \) are the square roots of the largest \(p \) eigenvalues of both \((n-1)^{-1} \mathbf{X}_{\text{dev}}' \mathbf{X}_{\text{dev}} = S \) and \((n-1)^{-1} \mathbf{X}_{\text{dev}} \mathbf{X}_{\text{dev}}' \).

The columns of \(\mathbf{V} \) are the eigenvectors of \(\mathbf{X}_{\text{dev}}' \mathbf{X}_{\text{dev}} \).
Also

\[\mathbf{X}_{\text{dev}} \mathbf{V} = [\hat{y}_1, \hat{y}_2, \ldots, \hat{y}_p] = \left(\sqrt{n - 1} \right) \mathbf{UD} \]

so the singular value decomposition of \((n - 1)^{-1/2} \mathbf{X}_{\text{dev}}\) provides all the details of the sample principal components:

- the coefficients \(\mathbf{V}\);
- the values \(\mathbf{UD}\).

Similarly, if \(\mathbf{X}^*\) is \(\mathbf{X}_{\text{dev}}\) with its columns normalized (sum of squares = 1), then

\[\mathbf{R} = \mathbf{X}^*/\mathbf{X}^*, \]

and the singular value decomposition of \(\mathbf{X}^*\) gives the PCA of \(\mathbf{R}\).
Example: 5 stocks

- **DU PONT E I DE NEM (NYSE:DD)** (a former Dow Industrials stock)
- **HONEYWELL INTL INC (NYSE:HON)** (a former Dow Industrials stock)
- **EXXON MOBIL CP (NYSE:XOM)** (a Dow Industrials stock)
- **CHEVRON CORP (NYSE:CVX)** (a Dow Industrials stock)
- **DOW CHEMICAL (NYSE:DOW)** (former Dow stock)
SAS `proc princomp` program and output.

R code and graphs for an updated set of stocks: DD, HON, and XOM, plus MSFT (Microsoft) and WMT (Walmart).

```r
stocksPCAcor = prcomp(stocks(), scale. = TRUE);
print(stocksPCAcor);
plot(stocksPCAcor);
biplot(stocksPCAcor);

stocksPCAcov = prcomp(stocks());
print(stocksPCAcov);
plot(stocksPCAcov);
biplot(stocksPCAcov);
```
Biplot for standardized stock returns
stocksPCA cov

Variances

0 5 10 15

10

15
Principal Components

Biplot for unstandardized stock returns

NC STATE UNIVERSITY
How Many Components?

- How many components are important?
 - No definitive answer in the PCA framework.
 - The *factor analysis* model allows maximum likelihood estimation, hence hypothesis testing.
- For insight, use all that have a substantive interpretation.
- For other uses such as regression, we need an objective rule.
▶ Use “scree” plot (plot of eigenvalues), and look for an “elbow”; very subjective.
▶ Simple rule of thumb: use all eigenvalues larger than the average.
 ▶ Note: for the correlation matrix, the average is always 1, so the rule is: use all eigenvalues > 1.
▶ Overland and Preisendorfer (1982) proposed a rule ("Rule N") based on comparison of observed eigenvalues with the distribution of eigenvalues in the case of iid $N(0, \sigma^2)$.
Suppose that the rows of the data matrix X are a random sample of size n from $N_p(\mu, \Sigma)$.

Assume that Σ has distinct eigenvalues

$$\lambda_1 > \lambda_2 > \cdots > \lambda_p > 0.$$

Then, approximately for large n,

$$\sqrt{n} \left(\hat{\lambda} - \lambda \right) \sim N_p \left[0, 2 \times \text{diag} (\lambda^2) \right].$$
In other words, $\hat{\lambda}_i$ and $\hat{\lambda}_k$ are approximately independent for $k \neq i$, and

$$\hat{\lambda}_i \sim N\left(\lambda_i, \frac{2\lambda_i^2}{n}\right).$$

Note: if

$$\frac{n\hat{\lambda}}{\lambda} \sim \chi_n^2$$

then similarly, approximately,

$$\hat{\lambda} \sim N\left(\lambda, \frac{2\lambda^2}{n}\right).$$
So we could also state that, approximately,

\[
\frac{n\hat{\lambda}_i}{\lambda_i} \sim \chi_n^2.
\]

Simulations suggest that this is a better approximation for small \(n \), if the eigenvalues are well separated.

Asymptotics suggest that the degrees of freedom for \(\hat{\lambda}_i \) could be \(n - i + 1 \) instead of \(n \).

Also \(\sqrt{n}(\hat{e}_i - e_i) \) is approximately \(N_p (0, E_i) \), where

\[
E_i = \lambda_i \sum_{k=1}^{p} \frac{\lambda_k}{(\lambda_k - \lambda_i)^2} \times e_k e_k'.
\]
Test for equal correlations:

\[H_0 : \mathbf{R} = \begin{bmatrix}
1 & \rho & \ldots & \rho \\
\rho & 1 & \ldots & \rho \\
\vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \ldots & 1
\end{bmatrix} \]

against the alternative of a general (unstructured) \(\mathbf{\Sigma} \) or \(\mathbf{R} \).

- \(H_0 \) is equivalent to equality of all eigenvalues of \(\mathbf{R} \) but one.
- Likelihood ratio test (and Lawley’s test) give large-sample \(\chi^2 \) statistic with \((p + 1)(p - 2)/2\) d.f.
Other related tests of interest:

- *compound symmetry* is a variance-components structure; it is stronger, requiring equal correlations and equal variances;
- equivalent to equality of all eigenvalues of Σ but one.
- *sphericity* is the necessary and sufficient condition for univariate repeated measures to be valid; it is a weaker condition: $\sigma_{i,j} = (\sigma_{i,i} + \sigma_{j,j})/2 - \tau^2$.
- no simple characterization in terms of eigen structure.