E5. We have an iid sample Y_1, \ldots, Y_n from a $N(\mu, \sigma^2)$ distribution and a complicated estimator \hat{g} of $g(\mu, \sigma)$. Give a method for checking to see if \hat{g} is a function solely of the complete sufficient statistic $T = (\overline{Y}, S)$. If \hat{g} is not a function only of T, suggest a computational-based method for improving it.

E6. John Monahan had a consulting problem where on night 1, X_1 out of N insects were eaten. On the second night, X_2 out of $N - X_1$ insects were eaten. Assuming that the probability that an insect is eaten stays constant at p, the goal is to estimate p. We can compute the likelihood using the fact that X_1 and $X_2|X_1$ are binomial or that jointly $(X_1, X_2, N - X_1 - X_2)$ is multinomial($N, p_1 = p, p_2 = p(1 - p), p_3 = 1 - p_1 - p_2$).

a) Find the maximum likelihood estimator of p.

b) Find an unbiased estimator of p. What happens when we try to condition on (X_1, X_2)?

c) Show that this particular multinomial family is a curved exponential family and find an unbiased estimator T of 0 (thus the minimal sufficient statistic is not complete). (Hint: use the binomial example from class about the UMVU estimator of $p(1 - p)$ and note that marginally X_2 is binomial($N, p(1 - p)$).)

d) Using b) and c), give a general form for unbiased estimators of p. (Hint: just form a linear combination that is unbiased.)

E7. (Problem 4.25, p. 144 of TSH). Let X, Y be independently distributed according to the negative binomial distributions $Nb(p_1, m)$ and $Nb(p_2, n)$, respectively. For example, X has probability mass function

$$P(X = x) = \binom{m + x - 1}{x} p_1^m (1 - p_1)^x, \quad x = 0, 1, 2, \ldots$$

a) Let $q_i = 1 - p_i$. Show that there exists a UMP unbiased test for $H : \theta = q_2/q_1 \leq \theta_0$ and hence in particular for $H' : p_1 \leq p_2$.

b) Determine the conditional distribution required for testing H' when $m = n = 1$.