Dates

- Internal: # days since Jan 1, 1960
- Need format for reading, one for writing
- Often DATE is ID variable (extrapolates)
- Program has lots of examples:

```plaintext
options ls=76 nodate; title "Time Series Example 1";
data A; input date $ Y @@; cards;
Jan82 10  Apr82 30  Jul82 60  Oct82 40
Jan83 50  Feb83 20  Mar83 35
proc plot; plot Y*date/vpos=20 hpos=50; run;
data B;
Diff = '01jan80'D-'13nov1979'd; dec1919='31dec1919'd;
dec19='31dec19'D; jan20='01jan20'D;
date1 = 18; date2=18; date3=18;
format date1 monyy.; format date2 date9.; format date3 mmddyy.;
proc print; run;
data c; array date(3);
input x date7. ;
do i=1 to 3; twoi=2*i; date(i) =
intnx('month','01jan1912'd,twoi); end;
cards;
01feb60
proc print;
proc print; format date1-date3 mmddyy.;
data next; set a; newdate= input(date, monyy.);
newdate2 = newdate; format newdate2 monyy.;
proc sort; by date; proc print;
proc sort; by newdate2; proc print;
```
Program Output:

Time Series Example 1

Plot of Y*date. Legend: A = 1 obs, B = 2 obs, etc.

<table>
<thead>
<tr>
<th>Obs</th>
<th>Diff</th>
<th>dec1919</th>
<th>dec19</th>
<th>jan20</th>
<th>date1</th>
<th>date2</th>
<th>date3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>-14611</td>
<td>21914</td>
<td>-14610</td>
<td>JAN60</td>
<td>19JAN1960</td>
<td>01/19/60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>date1</th>
<th>date2</th>
<th>date3</th>
<th>x</th>
<th>i</th>
<th>twoi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-17472</td>
<td>-17411</td>
<td>-17350</td>
<td>31</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>date1</th>
<th>date2</th>
<th>date3</th>
<th>x</th>
<th>i</th>
<th>twoi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>03/01/12</td>
<td>05/01/12</td>
<td>07/01/12</td>
<td>31</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Obs</th>
<th>date</th>
<th>Y</th>
<th>newdate</th>
<th>newdate2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apr82</td>
<td>30</td>
<td>8126</td>
<td>APR82</td>
</tr>
<tr>
<td>2</td>
<td>Feb83</td>
<td>20</td>
<td>8432</td>
<td>FEB83</td>
</tr>
<tr>
<td>3</td>
<td>Jan82</td>
<td>10</td>
<td>8036</td>
<td>JAN82</td>
</tr>
<tr>
<td>4</td>
<td>Jan83</td>
<td>50</td>
<td>8401</td>
<td>JAN83</td>
</tr>
<tr>
<td>5</td>
<td>Jul82</td>
<td>60</td>
<td>8217</td>
<td>JUL82</td>
</tr>
<tr>
<td>6</td>
<td>Mar83</td>
<td>35</td>
<td>8460</td>
<td>MAR83</td>
</tr>
<tr>
<td>7</td>
<td>Oct82</td>
<td>40</td>
<td>8309</td>
<td>OCT82</td>
</tr>
</tbody>
</table>
Applied Time Series Notes

<table>
<thead>
<tr>
<th>Obs</th>
<th>date</th>
<th>Y</th>
<th>newdate</th>
<th>newdate2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan82</td>
<td>10</td>
<td>8036</td>
<td>JAN82</td>
</tr>
<tr>
<td>2</td>
<td>Apr82</td>
<td>30</td>
<td>8126</td>
<td>APR82</td>
</tr>
<tr>
<td>3</td>
<td>Jul82</td>
<td>60</td>
<td>8217</td>
<td>JUL82</td>
</tr>
<tr>
<td>4</td>
<td>Oct82</td>
<td>40</td>
<td>8309</td>
<td>OCT82</td>
</tr>
<tr>
<td>5</td>
<td>Jan83</td>
<td>50</td>
<td>8401</td>
<td>JAN83</td>
</tr>
<tr>
<td>6</td>
<td>Feb83</td>
<td>20</td>
<td>8432</td>
<td>FEB83</td>
</tr>
<tr>
<td>7</td>
<td>Mar83</td>
<td>35</td>
<td>8460</td>
<td>MAR83</td>
</tr>
</tbody>
</table>

PROC EXPAND (cubic spline)

```sas
data last; input Y @@; date=intnx('month','01dec83'd,_n_); format date monyy.; cards;
10 . . 12 18 40 . 13 18 . . . 10 . 10 10
```

```sas
proc print;
proc expand data=last from=month to=month out=out1;
  convert Y = ynew; id date;
data out1; merge out1 last; by date; proc plot data=out1;
  plot Y*date="*" Ynew*date = "-" /overlay vpos=20 hpos=50;
proc expand data=last from=month to=week out=out2
  outest=spline;
  convert Y = Ywk; id date;
proc print data=out2(obs=5);
proc print data=spline(obs=5);
data out2; merge out2 last; by date; proc plot data=out2;
  plot Y*date="*" Ywk*date = "-" /overlay vpos=20 hpos=50;
run;
```

Time Series Example 1

<table>
<thead>
<tr>
<th>Obs</th>
<th>Y</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>JAN84</td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>FEB84</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>MAR84</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>APR84</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>MAY84</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>JUN84</td>
</tr>
<tr>
<td>7</td>
<td>.</td>
<td>JUL84</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>AUG84</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>SEP84</td>
</tr>
<tr>
<td>10</td>
<td>.</td>
<td>OCT84</td>
</tr>
</tbody>
</table>
Plot of Y*date. Symbol used is '*'.
Plot of y_{new}*date. Symbol used is '-'.
Time Series Example 1

Plot of Y vs $date$. Symbol used is '*'.
Plot of Y_{wk} vs $date$. Symbol used is '-'.

NOTE: 83 obs had missing values. 17 obs hidden.

Data Sets

- Expect column for id (date)
- Dependent (response, target) variable and explanatory (input) variable columns
- May need to transpose, combine.
data a; input y1-y5; cards;
12 11 16 19 999
data b; retain date;
if _n_=1 then do;
 input month day year @@; date=mdy(month,day,year); end;
input Y Z @@; if _n_>1 then date=date+1; format date mmdyy.;
cards;
10 28 1987 16 1 19 2 15 3 18 4 21 4 25 3 28 2 26 1
;
proc print data=a; proc print data=b;
proc transpose data=a out=aa; var y1-y5;
data aa; set aa (rename=(col1=Y)); *drop _name_;
date=date+1; retain date '29oct1987'd;
proc print data=aa;
data both; merge b aa; by date; proc print; run;
• Merge: Format is first one encountered (aa has none)

• Merge: Value is last one encountered (like overrecording a tape)

Prediction

• BLUP Best Linear Unbiased Predictor
 \[E = \text{expectation} = \text{average in population. } \mathbb{E}\{X\} = \mu, \mathbb{E}\{(X-\mu)^2\} = \sigma^2 \]

 • Predictor (of \(Y_{n+L} \))
 • Linear (\(\hat{Y}_{n+L} = b_n Y_n + b_{n-1} Y_{n-1} + \cdots + b_1 Y_1 \), assuming means 0)
 • Unbiased (\(\mathbb{E}(Y_{n+L} - \hat{Y}_{n+L}) = 0 \))
 • Best (pick \(b_j \) to minimize something, e.g. \(\mathbb{E}(Y_{n+L} - \hat{Y}_{n+L})^2 \))

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3
\end{pmatrix}
= \begin{pmatrix}
Y_1 \\
v_{12} \\
v_{13}
v_{21} \\
v_{22} \\
v_{23}
v_{31} \\
v_{32} \\
v_{33}
\end{pmatrix}
\text{ } \mathbb{E}\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3
\end{pmatrix}
= \begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix}
\]

\[\hat{Y}_3 = \mu_3 + b_1(Y_1 - \mu_1) + b_2(Y_2 - \mu_2) \] unbiased

\[\text{Var}\{ Y_{3-\mu_3} - b_1(Y_1 - \mu_1) - b_2(Y_2 - \mu_2) \} = (\text{from St 512 !!}) \]

\[
\begin{pmatrix}
-b_1 \\
-b_2 \\
1
\end{pmatrix}
\begin{pmatrix}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23} \\
v_{31} & v_{32} & v_{33}
\end{pmatrix}
\begin{pmatrix}
-b_1 \\
-b_2 \\
1
\end{pmatrix}
\]

• Minimize! (set \(\frac{\partial}{\partial b_j}(\ast) = 0 \) for \(j=1,2 \))

Solution: \[
\begin{pmatrix}
b_1 \\
b_2
\end{pmatrix}
= \begin{pmatrix}
v_{11} & v_{12} & v_{13} \\
v_{21} & v_{22} & v_{23}
\end{pmatrix}^{-1}
\begin{pmatrix}
v_{13} \\
v_{23}
\end{pmatrix}
\]

• Example: \(\mu_3 = \mu_2 = \mu_1 = 100, Y_1 = 120, Y_2 = 180 \)
\[Y_1 = \begin{pmatrix} 8 & 4 & 2 \\ 4 & 8 & 4 \\ 2 & 4 & 8 \end{pmatrix} \]
\[b_2 = \begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} 1 \\ 64.16 \\ 2 \end{pmatrix} \begin{pmatrix} 8 & -4 & 0 \\ -4 & 8 & 24 \\ 0 & 24 & 1/2 \end{pmatrix} \]

\[\hat{Y}_3 = 100 + (1/2)(180-100) = 140 \]

(A) Toeplitz covariance matrix: \(\text{Cov}(Y_1, Y_3) = \gamma(|i-j|) \) is a function of \(|i-j|\) only.

\[\begin{pmatrix} A & B & C \\ B & A & B \\ C & B & A \end{pmatrix} \]
\[\begin{pmatrix} \gamma(0) & \gamma(1) & \gamma(2) \\ \gamma(1) & \gamma(0) & \gamma(1) \\ \gamma(2) & \gamma(1) & \gamma(0) \end{pmatrix} \]

(B) Means all the same

(A) \& (B) \overset{\text{defn.}}{\implies} "COVARIANCE STATIONARY" or just "STATIONARY"

True or false for Toeplitz covariance matrix:

- Covariance matrix of \(Y_1, Y_2, \ldots, Y_n \) is the same as that of \(Y_n, Y_{n-1}, \ldots, Y_1 \)
- BLUP of \(Y_1 \) based on \(Y_2, \ldots, Y_n \) uses same weights \((b_j) \) as BLUP of \(Y_n \) based on \(Y_{n-1}, \ldots, Y_1 \)

- Stationary: Toeplitz matrix still has \(n \) entries, with mean that's \(n+1 \) parameters to estimate - still too many.

- Idea: Express \(\gamma(h) \) as function of just a few unknowns.

Example 1: \(\gamma(0), \gamma(1), \gamma(2), \) and \(\gamma(h)=0 \) if \(h>2 \). "MA(2)"
Example 2: \(\gamma(0), \) and \(\gamma(h)=\rho^h\gamma(0) \) for \(h>0 \). "AR(1)"
Example 3: \(\gamma(0), \gamma(1), \) and \(\gamma(h)=\rho^h\gamma(1) \) for \(h>1 \). "ARMA(1,1)"
Example 4: \(\gamma(0), \) and \(\gamma(h)=0 \) if \(h>0 \). "White Noise"

Check: \(\gamma(0)=100, \gamma(1)=80, \gamma(2)=72, \gamma(2)=64.8, \gamma(3)=58.32 \) etc.

What type is this???

- Matrices must be "positive semi-definite" (conditions that prevent negative variances)
Example

\[
\begin{pmatrix}
10 & 8 & 0 \\
8 & 10 & 8 \\
0 & 8 & 10 \\
\end{pmatrix}
\]
looks like MA(1) but variance of \(W = (1, -1, 1) \)

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
\end{pmatrix}
\]

would then be

\[
\begin{pmatrix}
1 & -1 & 1 \\
8 & 10 & 8 \\
0 & 8 & 10 \\
\end{pmatrix}
\begin{pmatrix}
1 \\
-1 \\
1 \\
\end{pmatrix}
= 30 - 32 = -2 < 0
\]

Can't have negative variance!!

- We will see in the course that

1. All AR, MA, and ARMA models can be expressed in terms of white noise as
 \[Y_t - \mu = \alpha_1(Y_{t-1} - \mu) + \alpha_2(Y_{t-2} - \mu) + \cdots + \alpha_p(Y_{t-p} - \mu) + e_t - \theta_1 e_{t-1} - \cdots - \theta_q e_{t-q}\]

2. Stationarity for these models is ensured if roots of a certain "characteristic polynomial" are in the right region (no unit roots!)

3. The associated covariances \(\gamma(h) \) are related to the \(\alpha \) and \(\theta \) parameters through the "Yule-Walker" equations.

4. The covariances \(\gamma(h) \) can be estimated without assuming a model and thus can serve as identifying functions to show what kind of model is appropriate.

5. Each such series has a "spectral density" that decomposes the variation in a series into components at different frequencies. For example the series
 \[-1, 1, -1, 1, -1, 1, -1, 1, \cdots, 1\]
 and
 \[-1, -1, -1, -1, 1, 1, 1, 1, \cdots, 1\]
 both have mean 0 and variance 1 but the first fluctuates at a higher frequency than the second.

Regression

- Regression \textit{may} be appropriate for time series

- Time \(t \) and seasonal dummies often used
• \(Y = X\beta + e \). Example, \(n=40 \), trend & quarterly effects

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4 \\
Y_5 \\
Y_6 \\
\vdots \\
Y_{40}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 \\
1 & 3 & 0 & 0 & 1 \\
1 & 4 & 0 & 0 & 0 \\
1 & 5 & 1 & 0 & 0 \\
1 & 6 & 0 & 1 & 0 \\
\vdots \\
1 & 40 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\alpha \\
\beta \\
\delta_1 \\
\delta_2 \\
\delta_3 \\
\delta_4 \\
\vdots \\
e_{40}
\end{pmatrix} +
\begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5 \\
e_6 \\
\vdots \\
e_{40}
\end{pmatrix}
\]

Quarter 1: \(Y_1 = \alpha + \beta t + \delta_1 + e_t \)
Quarter 2: \(Y_1 = \alpha + \beta t + \delta_2 + e_t \) \hspace{1cm} Four parallel lines
Quarter 3: \(Y_1 = \alpha + \beta t + \delta_3 + e_t \)
Quarter 4: \(Y_1 = \alpha + \beta t + 0 + e_t \)

\(\hat{\beta} = (X'X)^{-1}(X'Y) \) \hspace{1cm} B.L.U.E. \hspace{0.5cm} if errors are iid

\((X'X)^{-1}(MSE) \) is proper variance-covariance matrix if errors are iid

if errors are not iid then:

• \(\hat{\beta} = (X'X)^{-1}(X'Y) \) unbiased but not best
• \((X'X)^{-1}(MSE) \) not appropriate
• t tests, P-values, F tests all wrong (they use \((X'X)^{-1}(MSE) \))

• How to tell?

Durbin-Watson test:
Run regression as usual (Ordinary Least Squares, OLS)
Get residuals \(r_t \). Compute \(D = \sum_{t=2}^{n}(r_t-r_{t-1})^2 / \sum_{t=1}^{n} r_t^2 \)
For i.i.d. \(r_t \) you'd have \(E\{ \sum_{t=2}^{n}(r_t-r_{t-1})^2 \} = 2(n-1)\sigma^2 \) and \(E\{ \sum_{t=1}^{n} r_t^2 \} = n\sigma^2 \)
For i.i.d. \(D \) should be near 2.
If \(r_t \) and \(r_{t-1} \) alike (positively correlated) \(\sum_{t=2}^{n}(r_t-r_{t-1})^2 \) smaller and \(D<2 \).
Durbin-Watson give bounds on critical value and computationally intensive method to get exact p-values.

• Example: Quarterly NC retail sales.

```plaintext
options ls=76;
title 'North Carolina Retail Sales in million $';
title2 "Quarterly starting in 1983";
```
Data NCSALES;
input qsales t t2 s1 s2 s3 s4 date :yyq6.;
qutr=qtr(date); x=t+.3; *(for graphs);
cards;
 9485.68 1 1 1 0 0 0 1983Q1
 11164.09 2 4 0 1 0 0 1983Q2
 (more data)
 16829.22 24 576 0 0 0 1 1988Q4
;
data next; set ncsales;
proc reg;
model qsales = t S1 S2 S3/dw;
output out=out1 p=pred;
* Autoreg shows Durbin-Watson 1.2190 Pr < DW 0.0289;
proc plot; plot qsales*t=qtr pred*x="+"/overlay vpos=26;
run;

The REG Procedure
Model: MODEL1
Dependent Variable: qsales

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>78085176</td>
<td>19521294</td>
<td>189.90</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>19</td>
<td>1953171</td>
<td>102798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>23</td>
<td>80038346</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|-------|
| Intercept| 1 | 11342 | 187.41080 | 60.52 | <.0001|
| t | 1 | 224.91923 | 9.58041 | 23.48 | <.0001|
| s1 | 1 | -1737.00230 | 187.32915 | -9.27 | <.0001|
| s2 | 1 | -49.68154 | 186.10022 | -0.27 | 0.7924|
| s3 | 1 | -82.12577 | 185.35894 | -0.44 | 0.6627|

Durbin-Watson D 1.219
Number of Observations 24
1st Order Autocorrelation 0.358
To predict, concatenate future values of all X's to data (set Y = missing (.)

Advantages:
- Easy to understand and implement
- Picks up very regular trends and seasonal patterns (dummy variables)
- Has check for autocorrelation (Durbin_Watson)

Disadvantages
- Not flexible (changing trend, seasonal difficult to model)
- Autocorrelation destroys inference (but see PROC AUTOREG later)
- Need future values of input variables.
Transformations

- Most common: no transformation or log
 Try log if variation increases as mean increases.

- Box-Cox family (see Steel et al, St 512 text, page 246)

 \[Y^\lambda \], e.g. \(Y^{\frac{1}{2}} = \sqrt{Y} \)

 Fit model to \(X \) where \(X = (Y^{\lambda-1})/(\lambda Y^{\lambda-1}) \) for grid of \(\lambda \) values
 Let \(X = \frac{Y}{\ln(Y)} \) for \(\lambda = 0 \).

 Plot MSE or likelihood versus \(\lambda \) and pick optimal \(\lambda \) from plot.

- Plot on next page is

 Dow Jones (upper left) Log(Dow) upper right
 Log difference (lower panel)
 Transformation can have big effect.

- Log difference often used in economics (Log is natural log, ln)

 \[\log(Y_t) - \log(Y_{t-1}) = \log(Y_t/Y_{t-1}) \]
 Taylor’s series: \(\log(1+\epsilon) = \log(1) + \epsilon - \epsilon^2/2 + \cdots \approx \epsilon \) for \(\epsilon \) small.
 Thus 100 \(\log(Y_t/Y_{t-1}) \) is approximate percentage change if small.

```
data a; array X(11);
do i=1 to 11; X(i) = .88+i/50; end; output;
do i=1 to 11; x(i) = log(x(i)); end; output;
proc print noobs; var X1-X11; format X1-X11 5.2;
run;
```

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
<th>X8</th>
<th>X9</th>
<th>X10</th>
<th>X11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>0.92</td>
<td>0.94</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>1.02</td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
<td>1.10</td>
</tr>
<tr>
<td>-0.11</td>
<td>-0.08</td>
<td>-0.06</td>
<td>-0.04</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
</tr>
</tbody>
</table>

- \(\log(Y) \sim N(\mu,\sigma^2) \Rightarrow \ E\{Y\} = E\{e^X\} = \frac{1}{\sqrt{2\pi}\sigma} \int e^x e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \)

 \[
 \frac{1}{\sqrt{2\pi}\sigma} \int e^{-\frac{x^2-2\mu x+\mu^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}\sigma} e^{\mu+\sigma^2/2} \int e^{-\frac{x^2-2\mu x+\mu^2}{2\sigma^2}} dx = e^{\mu+\sigma^2/2} \text{ (not just } e^\mu)\]

- Although exponentiating mean of \(\log(Y) \) does not give mean of \(Y \), it is true that
 \(\Pr\{\log(Y) < c\} = \Pr\{Y < e^c\} \) form which we see exponentiating median of \(\log(Y) \) gives
 median of \(\log(Y) \), that is, \(e^\mu \) is median of \(Y \) (not mean).