Sample Questions for Exam III
ST422 - Introduction to Mathematical Statistics-II
The ACTUAL exam will consists of less number of problems.

1. Let Y_1, Y_2,\ldots,Y_n be a random sample from some density which has mean μ and variance σ^2.

 (a) Show that $\sum_{i=1}^{n} a_i X_i$ is an unbiased estimator of μ for any set of known constants a_1, a_2,\ldots,a_n satisfying $\sum_{i=1}^{n} a_i = 1$.

 (b) If $\sum_{i=1}^{n} a_i = 1$, show that $Var[\sum_{i=1}^{n} a_i Y_i]$ is minimized for $a_i = \frac{1}{n}$, $i = 1,\ldots,n$.

 What does this result say about the relative efficiency of \bar{Y}?

2. Find a 90% C.I. for the mean of a normal distribution with $\sigma = 3$ given the sample $(3.3, -0.3, -0.6, -0.9)$. What would be the confidence interval if σ were unknown?

3. Develop a method for estimating the ratio of variances of two normal populations by a confidence interval.

4. Let Y be a single observation from a $Beta(\theta, 1)$ distribution, where $\theta > 0$.

 (a) Find a pivotal quantity.

 (b) Use the pivotal quantity of (a) to find a 95% C.I. of θ.

5. Let $Y_1,\ldots,Y_n \sim_{i.i.d} N(\theta, \theta^2)$, $\theta > 0$.

 (a) Find a sufficient statistic for θ.

 (b) Show that \bar{Y}^2 is a biased estimate of θ^2.

 (c) Find a number c such that $c\bar{Y}^2$ is an unbiased estimate of θ^2.

 (d) Find a consistent estimate of θ.

 (e) Find a pivotal quantity of θ.

 (f) Use the pivotal quantity of (e) to find a 90% C.I. of θ.
6. Let $Y_1, Y_2, \ldots, Y_n \sim \text{i.i.d. } Exp(\theta)$.

 (a) Show that \bar{Y} is a sufficient statistic for θ.

 (b) Suggest an unbiased estimator for θ, and show how would you estimate the standard error of your estimator.

 (c) Is your estimator in (b) consistent for θ?

 (d) Show that $2n\bar{Y}/\theta$ is a pivotal quantity.

 (e) Use the above pivotal quantity in (d) to obtain a $100(1 - \alpha)$% C.I. for θ.

7. Solve the **suggested problems from the text** (see lecture slides).

8. Additional suggested problems from the text: 8.6, 8.21, 8.24, 8.63, 8.91, 8.94, 9.40. *(I strongly recommend you to solve all these additional problems)*

 Solutions to above problems will NOT be posted on the web. However, I’ll solve the problems in class.