1. Prove that if $P(A) > 0$ and $P(B) > 0$, then
 (i) If A and B are mutually exclusive, they cannot be independent.
 (ii) If A and B are independent, they cannot be mutually exclusive. [20]

2. Two people each toss a fair coin n times. Find the probability that they will toss the same number of heads. [10]

3. In answering a question on a multiple-choice test, a student either (correctly) knows the answer or guesses. Let p be the probability that the student knows the answer and $1 - p$ be the probability that the student guesses. Assume that a student who guesses at the answer guesses completely at random, that is the student will be correct with probability $1/m$, where m is the number of multiple-choice alternatives. What is the conditional probability that a student knew the answer, given that he or she answered it correctly? [20]

4. Let X be a continuous random variable with the density function

 $$f_X(x) = \begin{cases} \frac{1}{2}x^2, & \text{if } -2 \leq x \leq 1 \\ 0, & \text{o.w.}\end{cases}$$

Define $Y = X^2$. Find the density function of Y. [20]

5. The random variable X have the density

 $$f_X(x) = xe^{-x}, \quad x > 0.$$

Find the density of $Y = X^3$, and compute the expected value $E(Y)$? [10]

6. Let X be a discrete random variable taking values $0, 1, 2, \ldots$ with probabilities

 $P(X = 0) = 1 - \alpha + \alpha p$ and for $k = 1, 2, \ldots$, $P(X = k) = \alpha pq^k$, where $q = 1 - p$, $0 < p < 1$, $0 < \alpha < 1$.

(i) Find the moment generating function of X.
 (ii) Compute the $E(X)$ and $Var(X)$ based on the moment generating function obtained from (i). [20]