3) Consider the usual unbalanced one-way ANOVA model:
\[y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad \text{for } i = 1, ..., a = 3, \text{ and } j = 1, ..., n_i, \]
with \(n_1 = n_2 = 3 \) and \(n_3 = 2 \). Assume, as usual, that \(\epsilon_{ij} \) are iid \(\mathcal{N}(0, \sigma^2) \). Below are given the design matrix \(X \) and observed response vector \(y \):

\[
\begin{bmatrix}
y_{11} \\
y_{12} \\
y_{13} \\
y_{21} \\
y_{22} \\
y_{23} \\
y_{31} \\
y_{32}
\end{bmatrix} =
\begin{bmatrix}
16 \\
14 \\
15 \\
10 \\
14 \\
12 \\
14 \\
18
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
x_8
\end{bmatrix}
\]

Note that the rank of \(X \) is 3 and \(\text{SSE} = 18 \).

a) Construct the normal equations and find the family of solutions to the normal equations.

b) Since the rank of \(X \) is 3, construct 3 linearly independent estimable functions.

c) Show that the least squares estimators for the functions you gave in (c) do not depend on the choice of solution to the normal equations.
*4) Now we learn that the experiment in (3) was not properly reported to you, that there was another factor, and that the proper model was a two-way crossed model without interaction:

\[y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}, \quad \text{for } i = 1, ..., a = 3, \text{ and } j = 1, ..., n = 3, \]

but with one missing cell. Assume, as usual, that \(e_{ij} \) are iid \(N(0, \sigma^2) \). Below are given the the response vector \(y \), new design matrix \(X \) and parameter vector \(b \). Also below is my solution vector to the normal equations, and the generalized inverse \(I \) I used.

\[
y = \begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \\ y_{31} \\ y_{32} \end{bmatrix} = \begin{bmatrix} 16 \\ 14 \\ 15 \\ 10 \\ 14 \\ 12 \\ 14 \\ 18 \end{bmatrix} \quad Xb = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 15 \\ 12 \\ 16 \\ -1 \\ 1 \\ 0 \end{bmatrix}
\]

Note that the rank of \(X \) is 5 and SSE for this model is 12.

a) Find a basis for \(\mathcal{N}(X) \).

b) We're interesting in testing the hypothesis of no block effect \(H: \beta_1 = \beta_2 = \beta_3 \) vs. \(A: \) not all equal. Write this hypothesis as \(H: \mathbf{K}^Tb = \mathbf{m} \) by giving \(\mathbf{K} \) and \(\mathbf{m} \).

c) Test the hypothesis \(H: \beta_1 = \beta_2 = \beta_3 \) vs. \(A: \) not all equal by giving the appropriate test statistic and its distribution under \(H \). You can use either the likelihood ratio test approach, or the \((\mathbf{K}^T\hat{b} - \mathbf{m})^T[\mathbf{K}^T(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{K}]^{-1}(\mathbf{K}^T\hat{b} - \mathbf{m}) \) approach.

If we were to construct the restricted normal equations, we should know some things about these equations and a solution.

\[
\begin{bmatrix} X^T X & K \\ K^T & 0 \end{bmatrix} \begin{bmatrix} b \\ \theta \end{bmatrix} = \begin{bmatrix} X^T y \\ m \end{bmatrix}
\]

d) Give a possible vector for \(\hat{b}_H \), the first part of the solution vector to the restricted normal equations above.

e) Is \(\theta \) equal to zero? (on the Final, I just asked for a yes or no answer)