1. Recall the experiment with \(t = 5 \) sires (male beef cattle parents), and \(n = 8 \) offspring from each, leading to measured birthweights of \(N = 40 \) offspring. We considered a random effects model:

\[
Y_{ij} = \mu + T_i + E_{ij}
\]

where

- \(\mu \) is an unknown population mean
- \(T_i \) is a random sample of sire effects from a population with unknown variance \(\sigma^2_T \)
- \(E_{ij} \) is a random sample of errors with unknown error variance \(\sigma^2 \).

In this activity, we will simulate many datasets from this model to study the sampling distributions of variance statistics:

(a) We’ll see that \(\hat{\sigma}^2 \) and \(\hat{\sigma}^2_T \) have non-normal sampling distributions. While these statistics are, on average, on target, they have large variability and can occasionally dramatically overshoot the variance components they are trying to estimate.

(b) We’ll see that if we compute a confidence interval for \(\mu \) from a (misspecified) fixed effects model, we’ll get the wrong answer. That is, the formula

\[
\bar{y}_{++} \pm t(.025, N - t)\sqrt{\frac{MS(E)}{N}}
\]

will lead to a much lower coverage rate than 95%.

(c) We’ll see that the appropriate 95% confidence interval takes a different form:

\[
\bar{y}_{++} \pm t(.025, t - 1)\sqrt{\frac{MS(Trt)}{N}}
\]

(Note that the degrees of freedom and mean square term are different.

SAS concepts

- the SAS macro language. (Run the `datagen` macro with different values of the macro variables, like `nsim=10` and `nsim=20`)
- by processing (for each level of a variable such as `simulation`
- the output delivery system (`ods`)
- `ods trace on`; to get info in the log about available datasets
- `ods listing close`; to stop sending output to the output window.