1. If \(A \subseteq E^n \) is a subspace of \(E^n \), show that \(A' = A^\perp \), where \(A' \) is the dual cone of \(A \) and \(A^\perp \) is the orthocomplement of \(A \).

Notes:
1. \(A \subseteq E^n \) is a subspace of \(E^n \) if for any \(x, y \in A \) and any scalars \(a, b \), \(ax + by \in A \).
2. If \(A \subseteq E^n \) is a subspace of \(E^n \), the orthocomplement \(A^\perp \equiv \{ x \in E^n : x^T y = 0 \ \text{for all}\ y \in A \} \).

2. If \(A_1 \) and \(A_2 \) are nonempty subsets of \(E^n \) with \(A_1 \subseteq A_2 \), show that \(A_2^\prime \subseteq A_1^\prime \).

3. If \(X = \{(x_1, x_2) \in E^2 : x_2 \geq -x_1^2 \} \), find \(S(X, \overline{x}) \) where \(\overline{x} = (0, 0) \).

4. Let \(X \) be a subset of \(E^n \), and let \(\overline{x} \in \text{int} \ X \). Show that the cone of tangents \(S(X, \overline{x}) \) of \(X \) at \(\overline{x} \) is \(E^n \). (A point \(x \) is in the interior of \(X \), denoted \(\text{int} \ X \), if \(N_r(x) \subseteq X \) for some \(\epsilon > 0 \), where \(N_r(x) = \{ y : \| y - x \| < \epsilon \} \) is an \(\epsilon \)-neighborhood around the point \(x \).

5. Consider the minimization problem

 \[
 \min f(x), \quad x \in X
 \]

 where \(X \subseteq E^n \) and \(f : E^n \rightarrow E^1 \) is differentiable.

 We showed in class that a necessary condition for \(\overline{x} \) to be a minimum of \(f \) is \(\nabla f(\overline{x}) \in (S(X, \overline{x}))^\prime \). In the special case where \(X = E^n \), what is the form of the above necessary condition? (Recall that if \(K \) is a cone, then \(K^\prime \equiv \{ y \in E^n : y^T x \geq 0 \ \text{for all}\ x \in K \} \) is the dual cone of \(K \).

6. Let \(f : E^n \rightarrow E^1 \) be a convex function. Show that \(\xi \) is a subgradient of \(f \) at \(\overline{x} \) if and only if the hyperplane \(\{ (\overline{x}, y) : y = f(\overline{x}) + \xi^T (\overline{x} - \overline{x}) \} \) supports \(\text{epi} f \) at \([\overline{x}, f(\overline{x})] \).

Note:
Let \(X \) be a nonempty subset of \(E^n \) and let \(\overline{x} \in \partial X \), where \(\partial X \) denotes the boundary of \(X \). A hyperplane \(H = \{ x : p^T (x - \overline{x}) = 0 \} \) is called a supporting hyperplane of \(X \) at \(\overline{x} \) if either \(X \subseteq H^+ = \{ x : p^T (x - \overline{x}) \geq 0 \} \) or else \(X \subseteq H^- = \{ x : p^T (x - \overline{x}) \leq 0 \} \). (Definition: \(\overline{x} \in \partial X \) if \(N_r(\overline{x}) \) contains at least one point in \(X \) and one point not in \(X \) for every \(\epsilon > 0 \).

Interesting facts relating optimization and \(\pi \):

(no work is required for this problem; just read and expand your mathematical horizons).

Everyone knows that \(\pi = 3.14159... \) is the ratio of the circumference of a circle to its diameter, given that \(E^2 \) is equipped with the usual Euclidean metric. Giving \(E^2 \) other metrics, however, alters the value of \(\pi \).

For example, under the taxicab metric \(d_1 \) on the plane, defined by

\[
d_1((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|
\]

circles are diamond-shaped and the value of \(\pi \) is 4. For the max-norm metric \(d_\infty \) given by

\[
d_\infty((x_1, y_1), (x_2, y_2)) = \max(|x_1 - x_2|, |y_1 - y_2|)
\]

circles are square and again \(\pi \) is 4.

The above metrics are special cases of a class of metrics

\[
d_p((x_1, y_1), (x_2, y_2)) = \sqrt[p]{|x_2 - x_1|^p + |y_2 - y_1|^p},
\]
defined only for \(p \geq 1 \). The table below gives approximate values of \(\pi \) for various values of \(p \).
The table suggests, and it is indeed true, that the minimum value of π_p for this class of metrics is $\pi_2 = \pi = 3.14159...$