Multiple Linear Regression
Multiple linear regression

Recall that: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates) X_1, X_2, \ldots, X_k.

The general equation is

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k.$$

I shall sometimes write $E(Y)$ as $E(Y|X_1, X_2, \ldots, X_k)$, to emphasize that $E(Y)$ changes with the values of the terms X_1, X_2, \ldots, X_k:

$$E(Y|X_1, X_2, \ldots, X_k) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k.$$
As always, we can write

\[\epsilon = Y - E(Y), \]

or

\[Y = E(Y) + \epsilon, \]

where the \textit{random error} \(\epsilon \) has expected value zero:

\[E(\epsilon) = E(\epsilon|X_1, X_2, \ldots, X_k) = 0. \]

So the general equation can also be written

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k + \epsilon. \]
Each term on the right hand side may be an independent variable, or a function of one or more independent variables.

For instance,

$$E(Y) = \beta_0 + \beta_1 X + \beta_2 X^2$$

has two *terms* on the right hand side (not counting the intercept β_0), but only one *independent variable*.

We write it in the general form as

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2,$$

with $X_1 = X$ and $X_2 = X^2$.

Multiple Linear Regression
Quantitative and qualitative variables

Some variables are measured quantities (i.e., on an interval or ratio scale), and are called *quantitative*. Others are the result of classification into categories (i.e., on a nominal or ordinal scale), and are called *qualitative*.

Some terms may be *functions* of independent variables:
- distance and distance2, or sine and cosine of (month/12).

The simplest case is when all variables are quantitative, and no mathematical functions appear: the *first-order* model.
Interpreting the parameters for first-order models

\(\beta_0 \) is still called the intercept, but now its interpretation is the expected value of \(Y \) when all independent variables are zero:

\[
\beta_0 = E(Y|X_1 = 0, X_2 = 0, \ldots, X_k = 0).
\]

For \(1 \leq i \leq k \), \(\beta_i \) measures the change in \(E(Y) \) as \(X_i \) increases by 1 with all the other independent variables held fixed.
First-order model: $E(Y) = 1 + 2X_1 + X_2$ for $X_2 = 0, 1, 2$
Example: Grandfather clocks

Dependence of auction price of antique clocks on their age, and the number of bidders at the auction.

- Data for 32 clocks.

Get the data and plot them:

The first-order model is

\[E(\text{PRICE}) = \beta_0 + \beta_1 \times \text{AGE} + \beta_2 \times \text{NUMBIDS}. \]
Grandfather clocks data: Scatter plots

1. Scatter plot of AGE vs. PRICE
2. Scatter plot of NUMBIDS vs. PRICE
Fitting the model: least squares

As in the case $k = 1$, the most common way of fitting a multiple regression model is by *least squares*.

That is, find $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k$ so that

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \ldots \hat{\beta}_k X_k$$

minimizes

$$\text{SSE} = \sum(Y_i - \hat{Y}_i)^2.$$

As noted earlier, other criteria such as $\sum |Y_i - \hat{Y}_i|$ are sometimes used instead.
Calculus leads to \(k + 1 \) linear equations in the \(k + 1 \) estimates \(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_k \).

These equations are always consistent; that is, they always have a solution when \(n > k \).

Usually, they are also non-singular; that is, the solution is unique.

- If they are singular, we can find a unique solution by either imposing constraints on the parameters or leaving out redundant variables.
Notice:

We will review matrix algebra and use it to solve least squares and derive $E(SSE)$ after having finished Chapter 4.
Model assumptions

No assumptions are needed to find least squares estimates.

To use them to make statistical inferences, we need these assumptions:

- The random errors $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are independent and have common variance σ^2;
- For small sample validity, the random errors are normally distributed, at least approximately.
The error variance, σ^2, is an important measure of model utility.

If $\sigma^2 = 0$:
- Random errors are all 0,
- Model parameters will be estimated without error (zero-length CI),
- $E(Y)$ will be estimated without error (zero-length CI),
- Prediction of Y will have no error (zero-length CI).

If σ^2 is large:
- Random errors are large (on average in absolute values),
- Model parameters will be estimated with large error (wider CI),
- $E(Y)$ will be estimated with large error (wider CI),
- Prediction of Y will also have large error (wider CI).
Estimation of σ^2

As before, we estimate σ^2 using

\[SSE = \sum (Y_i - \hat{Y}_i)^2. \]

We can show that

\[E[SSE] = (n - k - 1)\sigma^2, \]

where $k + 1$ is the number of βs in the model, so the unbiased estimator is

\[s^2 = \frac{SSE}{df} = \frac{SSE}{n - k - 1} = \frac{SSE}{n - k - 1} \]

s^2 is called *Mean Squared Errors* or *MSE*.

Multiple Linear Regression
Fit the model for Grandfather clocks data

```r
# load in data
setwd("~/Dropbox/teaching/2015Fall/R_datasets/Exercises&Examples")
load("GFCLOCKS.Rdata")

fit = lm(PRICE~AGE + NUMBIDS, data=GFCLOCKS) # linear fit

summary(fit) # display results
```
Testing the utility of a model

Usually, the first test is an overall test of the model:

- \(H_0 : \beta_1 = \beta_2 = \cdots = \beta_k = 0. \)
- \(H_a : \) at least one \(\beta_i \neq 0. \)

\(H_0 \) asserts that none of the independent variables affects \(Y \); if this hypothesis is not rejected, the model is worthless.

- For instance, its predictions perform no better than \(\bar{y} \).

The test statistic is usually denoted \(F \).
F test statistic

\[F = \frac{(SS_{yy} - SSE)/k}{SSE/(n - k - 1)} = \frac{\text{Mean Square (Model)}}{\text{MSE}}. \]

- **F** is the ratio of the *explained* variability to the *unexplained* variability.
- If \(H_0 \) is true, \(F \) has a \(F \)-distribution with \(k \) and \(n - k - 1 \) degrees of freedom.
- Reject \(H_0 \) if \(F \) is large, i.e., \(F > F_\alpha \), based on \(k \) and \(n - k - 1 \) degrees of freedom.
Rejection region for the global F-test

0

F_{α}

Rejection region

F
F-test in R: the Grandfather clocks data

```r
# load in data
setwd("~/Dropbox/teaching/2015Fall/R_datasets/Exercises&Examples")
load("GFCLOCKS.Rdata")

fit = lm(PRICE~AGE + NUMBIDS, data=GFCLOCKS) #linear fit
summary(fit) #display results
```
\(F \)-test results: the Grandfather clocks data

- \(F \)-statistic: 120.2.
- Degrees of freedom for the \(F \)-test: 2 and 29.
- P-value for the \(F \)-test: \(9.2 \times 10^{-15} \).
- Conclusion: Reject \(H_0 \) in favor of \(H_1 \).
Testing β’s

Same as testing in simple linear regression models.

For the grandfathers clocks data, both the age of clocks and the number of bidders are significant predictors.
Multiple coefficient of determination/ R-squared

\[R^2 = 1 - \frac{\text{SSE}}{\text{SS}_{yy}} = 1 - \frac{\sum(y_i - \hat{y}_i)^2}{\sum(y_i - \bar{y})^2} \]

The interpretation of \(R^2 \) is still the fraction of variance “explained” by the regression model.

It measures the correlation between the dependent variable \(Y \) and the independent variables \emph{jointly}.

Adjusted R-squared

Because the regression model is adapted to the sample data, it tends to explain more variance in the sample data than it will in new data.

Rewrite:

$$1 - R^2 = \frac{\text{SSE}}{\text{SS}_{yy}} = \frac{1}{n} \sum (y_i - \hat{y}_i)^2$$

$$= \frac{1}{n} \sum (y_i - \bar{y})^2$$

Numerator and denominator are *biased* estimators of variance.
Replace $\frac{1}{n}$ with the multipliers that give unbiased variance estimators:

$$\frac{1}{n-p} \sum (y_i - \hat{y}_i)^2 \quad \frac{1}{n-1} \sum (y_i - \bar{y})^2,$$

where $k + 1$ is the number of estimated βs.

This defines the *adjusted* R-squared:

$$R_a^2 = 1 - \frac{1}{n-k-1} \sum (y_i - \hat{y}_i)^2 \quad \frac{1}{n-1} \sum (y_i - \bar{y})^2$$

$$= 1 - \frac{n-1}{n-k-1} \times \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}.$$

$R_a^2 < R^2$, and for a poorly fitting model you may even find $R_a^2 < 0!$