M-ESTIMATORS AND L-ESTIMATORS OF LOCATION:
UNIFORM INTEGRABILITY AND ASYMPTOTIC
RISK-EFFICIENT SEQUENTIAL VERSIONS

by

JANA JUREČKOVÁ
Department of Probability & Statistics
Charles University
Prague 8, Czechoslovakia

and

PRANAB KUMAR SEN
Department of Biostatistics
University of North Carolina
Chapel Hill, NC 27514, U.S.A.

Institute of Statistics Mimeo Series No. 1280

APRIL 1980
Sequential M- and L-estimators of location minimizing the risk asymptotically as the cost of one observation tends to 0 are constructed. Their asymptotic risk efficiencies are shown to coincide with the asymptotic efficiencies of the respective non-sequential estimators; this enables to construct the asymptotically minimax sequential M- and L-estimators in the model of contaminacy. The asymptotic distributions of the stopping times are derived for both types of estimators. The theorems on uniform integrability and moment convergence of (non-sequential) M- and L-estimators, developed as the main tools for the proofs, have an interest of their own.

AMS 1970 Subject Classifications: Primary 62L12; Secondary 60F25

Key Words & Phrases: M-estimator, L-estimator, asymptotic risk-efficiency, sequential point estimator, moment convergence.

1Research of this author was supported by the National Heart, Lung and Blood Institute, Contract NIH-NHLBI-71-2243 from the National Institutes of Health.
1. INTRODUCTION

Nonparametric sequential point estimation of location has received considerable attention during the recent past. Ghosh and Mukhopadhyay (1979) and Chow and Yu (1980) have considered asymptotically risk-efficient sequential point estimation of the mean of a population based on the sequence of sample means and variances, while Sen and Ghosh (1980) have extended the theory to general U-statistics. Sen (1980) has considered the problem of estimating the location of symmetric (but unknown) distribution based on a general class of rank-order (or so called R-) estimators and established the asymptotic risk-efficiency of the proposed sequential procedure. In the classical non-sequential case, the R-estimators form one of the three main groups of robust competitors of classical estimation procedures; the other two major groups are formed by M-estimators and L-estimators [viz., Huber (1973, 1977)]. The theory of asymptotically risk-efficient (sequential) point estimation based on a broad class of M- and L-estimators is developed in the current paper. Uniform integrability and moment-convergence properties of these M- and L-estimators play a fundamental role in this context.

Along with the preliminary notions, the proposed sequential point estimation procedures are outlined in Section 2. Section 3 is devoted to the study of uniform integrability and moment convergence of the M-estimators. Parallel results for the L-estimators are considered in Section 4. These results are then applied in the proofs of main theorems of Section 5 concerning the properties of the proposed sequential procedures. In particular, the Section 5 deals with the asymptotic risk-efficiency and with the asymptotic normality of the
allied stopping times. Similarly as in the case of R-estimators [Sen (1980)], it is shown that the asymptotic risk efficiencies of sequential estimators coincide with the asymptotic efficiencies of their non-sequential versions. This among others enables to extend the asymptotic minimax properties of M- and L-estimators in the model of contaminacy to the sequential case.

2. THE PROPOSED SEQUENTIAL PROCEDURES

Let \(\{X_i, i \geq 1\} \) be a sequence of independent and identically distributed random variables (i.i.d.r.v.) with distribution function (d.f.) \(F_\theta(x) = F(x - \theta), x \in \mathbb{R} = (-\infty, \infty) \), where \(F \) (unknown) is symmetric about 0 and \(\theta \) is the unknown location parameter to be estimated. Let \(T_n \) be a suitable estimator of \(\theta \) based on \(X_1, \ldots, X_n \) and assume that

\[
\nu_n^2 = nE(T_n - \theta)^2 \quad \text{exists for all } n \geq n_0, \tag{2.1}
\]

for some \(n_0(\geq 1) \) and

\[
\nu_n^2 \rightarrow \nu^2 \quad \text{as } n \rightarrow \infty, \quad 0 < \nu < \infty. \tag{2.2}
\]

We conceive the loss (in estimating \(\theta \) by \(T_n \))

\[
Q_n(a, c) = a(T_n - \theta)^2 + cn, \tag{2.3}
\]

where \(a \) and \(c \) are positive constants. Then the risk is

\[
\lambda_n(a, c) = EQ_n(a, c) = n^{-1}a\nu_n^2 + cn. \tag{2.4}
\]

We like to minimize (2.4) by a proper choice of \(n \). The optimal choice of \(n \) generally depends on the unknown \(F \), for any fixed \(c \) as well as asymptotically as \(c \rightarrow 0 \). In this asymptotic case, the optimal choice of \(n \) is \(n_0(c) \), where

\[
n_0(c) \sim b, \quad b = (a/c)^{1/2} \quad \text{and} \quad \lambda_{n_0}(a, c) \sim 2\nu\sqrt{ac}, \tag{2.5}
\]

where \(q(c) \sim r(c) \) denotes that \(\lim_{c \rightarrow 0} q(c)/r(c) = 1 \). This suggests the following procedure: Let \(\{\hat{\nu}_n\} \) be a sequence of estimates of \(\nu \) and let \(n' \) be an initial sample size (\(\geq 2 \)) and \(h(>0) \) be an
arbitrary constant. Define a stopping number \(N = N_c \) by

\[
N_c = \min\{n \geq n': n \geq b(\tilde{v}_n + n^{-h})\}, \quad c > 0
\]

(2.6)

and consider the sequential point estimator \(T_{N_c} \) based on \(X_1, \ldots, X_{N_c} \).

The risk of estimating \(\theta \) by \(T_{N_c} \) is then

\[
\lambda^*(a, c) = aE(T_{N_c} - \theta)^2 + cEN_c.
\]

(2.7)

We are primarily interested in showing that

\[
\frac{\lambda^*(a, c)}{\lambda_{n_0}(c)(a, c)} \rightarrow 1 \quad \text{as} \quad c \rightarrow 0,
\]

(2.8)

which means that the sequential procedure is asymptotically (as \(c \rightarrow 0 \)) equally risk-efficient as the optimal non-sequential one, if \(\nu \) were known.

The convergence (2.8) has been studied by more authors [referred to in Section 1] in the case that \(\{T_n\} \) is either the sample mean, U-statistic or some case of R-estimator. In the current paper, we shall show that (2.8) holds for a broad classes of M-estimators and L-estimators (i.e., the estimators of maximum-likelihood type and of linear combination of order statistics type, respectively).

An M-estimator \(M_n \) of \(\theta \) is a solution of the equation

\[
S_n(t) = \frac{1}{n} \sum_{i=1}^{n} \psi(X_i - t) = 0
\]

(2.9)

with respect to \(t \), where \(\psi \) is some nondecreasing score function (so that \(S_n(t) \) is \(\psi \) in \(t \)). More precisely, \(M_n \) is defined by

\[
M_n = (M_n^* + M_n^{**})/2,
\]

(2.10)

where

\[
M_n^* = \sup \{t: S_n(t) > 0\} \quad \text{and} \quad M_n^{**} = \inf \{t: S_n(t) < 0\}.
\]

(2.11)

Under suitable regularity conditions on \(\psi \) and on \(F \) [viz., Huber (1964)], to be specified later on,

\[
L\{n^{1/2}(M_n - \theta)\} \rightarrow N(0, \nu(M)^2) \quad \text{as} \quad n \rightarrow \infty
\]

(2.12)

where
\[\nu(M)^2 = \sigma(M)^2 / \gamma(M), \quad \sigma(M)^2 = \int_{-\infty}^{\infty} \psi^2(x) dF(x), \quad (2.13) \]

\[\gamma(M) = \gamma(\psi, F) = \int_{-\infty}^{\infty} \{f'(x)/f(x)\} \psi(x) dF(x) \quad (>0) \quad (2.14) \]

and \(f'(x) = \frac{d}{dx} f(x) = \frac{d^2}{dx^2} F(x) \) is assumed to exist almost everywhere.

In Section 3, we shall show that (2.1) and (2.2) hold for M-estimators generated by a class of bounded \(\psi \)-functions. In this case, we shall estimate \(\nu(M)^2 \) as follows. Let

\[s^2_n(M) = \sum_{i=1}^{n} \psi^2(x_i - M_n), \quad n \geq 1, \quad (2.15) \]

let \(\Phi \) be the standard normal d.f. and let \(\Phi(-T_0) = \epsilon, \quad 0 < \epsilon < 1 \). Put

\[M_n^- = \sup\{t: n^{-1/2}s_n(t) > \tau_0 \alpha/2 s_n(M)\} \]
\[M_n^+ = \inf\{t: n^{-1/2}s_n(t) < -\tau_0 \alpha/2 s_n(M)\} \]
\[d_n(M) = M_n^+ - M_n^- (\geq 0), \quad (2.16) \]

where \(0 < \alpha < 1 \) is some preassigned number. Then, it follows from Jurečková (1977) that as \(n \) increases,

\[\hat{\nu}_n(M) = \sqrt{n} d_n(M) / 2 \tau_0 \alpha/2 \rightarrow P \quad \nu(M) = \sigma(M) / \gamma(M); \quad (2.18) \]

in fact, stronger convergence properties of \(\nu_n(M) \) have been studied by Jurečková and Sen (1980 a, b). The stopping number defined by (2.6), corresponding to \(\{\hat{\nu}_n(M)\} \) is denoted by \(N_c^{(M)} \), so that

\[N_c^{(M)} = \min\{n \geq n': n \geq b(\hat{\nu}_n(M) + n^{-h})\} \quad (2.19) \]

and we shall show in Section 5 that (2.8) holds for \(\{M_n^{(M)}\} \).

The L-estimator \(L_n \) of location \(\theta \) is typically of the form

\[L_n = \sum_{i=1}^{n} c_{n_i} \hat{x}_{n_i} \quad (2.20) \]

where \(X_{n_1} \leq \ldots \leq X_{n_n} \) are the order statistics corresponding to \(X_1, \ldots, X_n \) and
\[c_{ni} = c_{n,n-i+1} \geq 0, \forall 1 \leq i \leq n, \text{ and } \eta_{i=1}^{n} c_{ni} = 1. \quad (2.21) \]

Denote
\[J_n(t) = n c_{ni} \text{ for } \frac{i-1}{n} < t \leq \frac{i}{n}, \ i = 1, \ldots, n \quad (2.22) \]
and suppose that
\[J_n(t) \to J(t) \text{ a.s., } t \in (0,1), \ J(1-t) = J(t) = 0, \ \int_{0}^{1} J(t) dt = 1. \quad (2.23) \]

Then, under some regularity conditions [viz., Huber (1969)],
\[L^{(12)}(L_n - \theta) \to N(0, \sigma^2) \text{ as } n \to \infty, \quad (2.24) \]
where
\[\sigma^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} [F(x \wedge y) - F(x)F(y)] J(F(x))J(F(y)) dx dy. \quad (2.25) \]

We proceed to estimate \(\sigma^2 \) by
\[\hat{\sigma}^2_{n(L)} = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} c_{ni} c_{nj} [n(i \wedge j) - ij] (X_n,i+1 - X_n,i) (X_n,j+1 - X_n,j), \quad (2.26) \]
where under suitable regularity conditions [viz., Sen (1978)]
\[\hat{\sigma}^2_{n(L)} \to \sigma^2 \text{ a.s. as } n \to \infty; \quad (2.27) \]
asymptotic normality results pertaining to the \(\sigma^2_{n(L)} \) are due to Gardiner and Sen (1979). The stopping number, defined by (2.6), for \(\{\hat{\nu}_n\} \) is denoted by \(N^{(L)}_c \), so that
\[N^{(L)}_c = \min\{n \geq n': n \geq b(\hat{\sigma}^2_{n(L)} + n^{-h})\}. \quad (2.28) \]

We shall show in Section 5 that (2.8) holds for \(\{L^{(L)}_n\} \) corresponding to a class of \(J \)-functions which vanish outside of a compact subinterval of \((0,1) \).

In the remaining of this section, we state the basic regularity conditions on \(F, \psi \) and \(J \), pertaining to our study. Sections 3 and 4 are devoted to the study of the uniform integrability and the moment convergence of \(\{M_n\} \) and \(\{L_n\} \), respectively; these results are used
in Section 5 in the proofs of (2.8) for the corresponding sequential procedures.

Assumptions on F: We assume that \(F \) has an absolutely continuous density \(f \) such that \(f(x) = f(-x), \forall x \in \mathbb{R} \) and
\[
\text{\(f(x) \) is \(\downarrow \) in \(x \) for \(x \geq 0. \) (2.29)}
\]
Moreover, \(F \) is supposed to have finite Fisher information, i.e.,
\[
I(F) = \int_{-\infty}^{\infty} \left\{ \frac{f'(x)}{f(x)} \right\}^2 dF(x) < \infty \quad (2.30)
\]
and we assume that there exists a positive number \(\ell \) (not necessarily an integer or \geq 1), such that
\[
E[|X_1|^\ell] = \int_{-\infty}^{\infty} |x|^\ell dF(x) < \infty. \quad (2.31)
\]

Assumptions on \(\psi \): We assume that \(\psi \) is nondecreasing and skew-symmetric, i.e.,
\[
\psi(x) = -\psi(-x) \text{ is } \uparrow \text{ in } x \in \mathbb{R}^+ = [0, \infty), \quad (2.32)
\]
and that there exists a positive number \(k \) such that
\[
\psi(x) = \psi(k) \cdot \text{sign } x \text{ for } |x| \geq k. \quad (2.33)
\]
Moreover, suppose that \(\psi \) could be decomposed in the absolutely continuous and step components, i.e.,
\[
\psi(x) = \psi_1(x) + \psi_2(x) \quad \forall x \in \mathbb{R} \quad (2.34)
\]
where \(\psi_1(x) \) is absolutely continuous [inside \(-k, k]\] and \(\psi_2 \) is pure step-function having a finite number of jumps inside \((-k, k]\); we denote the jump-points by \(a_j, 1 \leq j \leq m \), and let \(\psi_2(x) = \beta_j \) for \(a_{j-1} < x < a_j, 1 \leq j \leq m + 1 \), where \(a_0 = -k \) and \(a_{m+1} = k \). Then the constant \(\gamma(M) \) defined in (2.14) is equal to
\[
\gamma(M) = \int_{-\infty}^{\infty} \psi_1(x) dF(x) + \sum_{j=1}^{m} (\beta_j - \beta_j) f(a_j) > 0. \quad (2.35)
\]
Put
\[c_{\ell}(x) = |x|^{\ell} F(x)[1 - F(x)], \quad x \in \mathbb{R}; \quad c_{\ell}^* = \sup_{x \in \mathbb{R}} c_{\ell}(x) \quad (2.36) \]

where \(\ell \) is given by (2.31). Then
\[c_{\ell}^* < \infty, \quad \lim_{x \to \pm \infty} c_{\ell}(x) = 0 \quad \text{and} \quad \int_{-\infty}^{\infty} (F(x)(1 - F(x)))^b dx < \infty \quad \forall \ b > \frac{1}{\ell} > 0. \quad (2.37) \]

Assumptions on \(\{c_{ni} : 1 \leq i \leq n\} \) and on \(J \): We assume that
\[c_{ni} = c_{n,n-i+1} \geq 0, \quad 1 \leq i \leq n; \quad \sum_{i=1}^{n} c_{ni} = 1 \]
and that there exist an \(\alpha_0 \) \((0 < \alpha_0 < \frac{1}{2})\) and a sequence \(\{k_n\}, \quad k_n > 0 \) such that
\[c_{ni} = c_{n,n-i+1} = 0 \quad \text{for} \quad i \leq k_n \quad \text{where} \quad \frac{k_n}{n} \to \alpha_0 \quad \text{as} \quad n \to \infty. \quad (2.38) \]

Moreover, denoting
\[J_n(t) = n \cdot c_{ni} \quad \text{for} \quad \frac{i-1}{n} < t \leq \frac{i}{n}, \quad i = 1, \ldots, n \quad (2.39) \]
we assume that
\[\lim_{n \to \infty} J_n(t) = J(t) \quad \text{a.s.,} \quad t \in [0,1] \quad (2.40) \]

where the function \(J(t) \) has bounded variation on \([0,1]\) and
\[J(t) = J(1-t) \geq 0, \quad t \in [0,1], \quad \int_{0}^{1} J(t) dt = 1. \quad (2.41) \]

In the context of L-estimators, the assumption of finite Fisher information may be replaced by a weaker assumption
\[\sup_{F^{-1}(\alpha_0) \leq x \leq F^{-1}(1-\alpha_0)} |f'(x)| < \infty. \quad (2.42) \]

3. MOMENT CONVERGENCE OF M-ESTIMATORS

Uniform integrability and some moment-convergence properties of \(\{n^k(M_n - 0)\} \) are studied here. The following lemmas are needed in the sequel but they have an interest of their own.
LEMMA 3.1. Under the regularity conditions on ψ and F of Section 2, for every $c_1 > 0$ and $0 < t < \sqrt{n} c_1$,

$$\Pr\{|M_n| > t\} = \Pr\{|M_n| > t\} \leq 2e^{-c_2 t^2},$$

where

$$c_2 \geq 2[f(k + c_1)]^2 > 0.$$ \hspace{1cm} (3.1)

PROOF. Note that for every $t > 0$,

$$\Pr\{|M_n| > t\} = \Pr\{|M_n| > t\} + \Pr\{|M_n| < -t\} = 2\Pr\{|M_n| > t\},$$ \hspace{1cm} (3.3)

where, by (2.9) - (2.11),

$$\Pr\{|M_n| > t\} \leq \Pr\{n^{-1} S_n(t/\sqrt{n}) \geq 0\}
= \Pr\{n^{-1} S_n(t/\sqrt{n}) - \mu_n(t) \geq -\mu_n(t)\}.$$ \hspace{1cm} (3.4)

and

$$-\mu_n(t) = -E_0 n^{-1} S_n(t/\sqrt{n}) = -E_0 \psi(X_1 - (t/\sqrt{n}))$$

$$= E_0 [\psi(X_1) - \psi(X_1 - (t/\sqrt{n}))] = \int_0^\infty \psi(x) d[F(x) - F(x + (t/\sqrt{n}))]$$

$$= \int_0^{\infty} [F(x + (t/\sqrt{n})) - F(x)] d\psi(x)$$

$$= \int_0^{k} [F(x + (t/\sqrt{n})) - F(x)] d\psi(x)$$

$$= \int_0^{k} [F(x + (t/\sqrt{n})) - F(x) + F(-x + (t/\sqrt{n})) - F(-x)] d\psi(x)$$

$$= \int_0^{k} [F(x + (t/\sqrt{n})) - F(x - (t/\sqrt{n}))] d\psi(x)$$

$$= (2t/\sqrt{n}) \int_0^{k} f(x + (\theta t/\sqrt{n})) d\psi(x) \quad \text{[where } |\theta| < 1\text{]}$$

$$\geq (2t/\sqrt{n}) f(k + (t/\sqrt{n}) [\psi(k) - \psi(0)] \quad \text{[as } f(x) \text{ is } \downarrow \text{ in } x, x \geq 0\text{]}$$

$$\geq (2t/\sqrt{n}) f(k + c_1) \psi(k), \quad \forall \ t \in (0, c_1 \sqrt{n}) \quad \text{[as } \psi(0) = 0\text{]}$$

$$= (2c_2)^k \psi(k)(t/\sqrt{n}).$$ \hspace{1cm} (3.5)

Therefore, by (3.3) - (3.5), for every $0 < t < c_1 \sqrt{n}$,
where
\[Z_{ni} = \psi(X_i - \frac{t}{\sqrt{n}}) - \mathbb{E}\psi(X_i - \frac{t}{\sqrt{n}}), \quad i = 1, \ldots, n \] (3.7)
are independent r.v. with mean 0, bounded by \(2\psi(k)\) with probability 1. Hence, using Theorem 2 of Hoeffding (1963) on r.v. (3.7), the desired result follows from (3.6). Q.E.D.

Lemma 3.2. Under the regularity conditions on \(\psi\) and \(F\) of Section 2, for every \(t > 0\),
\[
P_0\{\sqrt{n|M_n| > t}\} \leq 2n^{\frac{1}{2}} \int_0^{t/(\sqrt{n})} (1 - u)^{n-\delta_n} du,
\] (3.8)
where
\[
m = \left\lfloor \frac{n+1}{2} \right\rfloor \quad \text{and} \quad \delta_n = 1 \quad \text{for} \quad n = 2m, \quad \delta_n = 0 \quad \text{for} \quad n = 2m + 1, \quad m \geq 1. \] (3.9)

Proof. We consider only the case \(n = 2m\); the proof for \(n = 2m + 1\) is analogous. Note that for every \(t > 0\),
\[
P_0\{\sqrt{n|M_n| > t}\} = 2P_0\{\sqrt{n|M_n| > t}\} \leq 2P_0\{X_{n,m+1} \geq -k + (t/\sqrt{n})\}
\] (3.10)
where \(X_{n,1} \leq \cdots \leq X_{n,n}\) are the order statistics corresponding to \(X_1, \ldots, X_n\). Since the right hand side of (3.10) equals to that of (3.8), the proof of (3.8) is complete. Q.E.D.

For any \(a \in [0, 1]\), put
\[
\rho(a) = 4a(1-a), \quad \text{so that} \quad 0 \leq \rho(a) \leq 1. \] (3.11)

Lemma 3.3. For every \(n \geq 1\) and \(a > \frac{1}{2}\),
\[
2n^{\frac{1}{2}} \int_0^{t/(\sqrt{n})} (1 - u)^{n-\delta_n} du \leq 2(\rho(a))^n
\] (3.12)
where \(m, \delta_n\) and \(\rho(a)\) are defined by (3.9) and (3.11).

Proof. We shall again prove (3.12) for \(n = 2m\) only; the proof for
n = 2m + 1 is analogous. Note that by repeated partial integration, the left-hand side of (3.12) reduces to
\[
2 \sum_{i=0}^{m-1} \binom{n}{i} a^i (1-a)^{n-i} \leq 2P\left\{ B(n, a) \leq \frac{n}{2} \right\}
\leq 2P\left\{ \frac{1}{n} B(n, a) - a \leq \frac{1}{2} - a \right\}, \tag{3.13}
\]
where \(B(n, a) \) is a binomial r.v. with parameters \((n, a)\). Since \(a > \frac{1}{2} \), by using Theorem 1 of Hoeffding (1963), we may bound the right hand side of (3.13) by \(2[\rho(a)]^n \). Q.E.D.

We are now in a position to prove the main theorems of this Section.

THEOREM 3.1. For every \(r > 0 \), there exists an \(n_r (< \infty) \) such that, under the regularity conditions (2.29) - (2.34),
\[
E_0 \{ n^{r/2} |M_n|^r \} < \infty, \text{ uniformly in } n \geq n_r. \tag{3.14}
\]

PROOF. Let \(c_1 > k > 0 \), where \(k \) is defined by (2.33). Note that
\[
E_0 \{ n^{r/2} |M_n|^r \} = \int_0^\infty r t^{r-1} p_0 (\sqrt{n} |M_n| > t) dt
= \left(\int_0^{c_1 \sqrt{n}} + \int_{c_1 \sqrt{n}}^\infty \right) r t^{r-1} p_0 (\sqrt{n} |M_n| > t) dt = I_{n1} + I_{n2}, \text{ say.} \tag{3.15}
\]

Then, by Lemma 3.1,
\[
I_{n1} \leq 2r \int_0^{c_1 \sqrt{n}} e^{-c_2 t^2} t^{r-1} dt \leq 2r \int_0^\infty e^{-c_2 t^2} t^{r-1} dt < \infty \tag{3.16}
\]
uniformly in \(n = 1, 2, \ldots \). On the other hand, if we let
\[
n_r = \left[\frac{r}{\ell} \right] + 1, \text{ where } \ell \text{ is defined by (2.31)} \tag{3.17}
\]
use (2.37) and Lemmas 3.2 and 3.3, we get
\[I_{n2} \leq 2r \int_{c_1 \sqrt{n}}^{\infty} t^{r-1} \left[\rho(F(-k + (t/\sqrt{n})) \right]^n dt \]
\[\leq 2rn r/2 \int_{c_1}^{\infty} u^{r-1} \left[\rho(F(-k + u)) \right]^n du \]
\[\leq 2r(c_{k1}^{c})^{(r-1)/r} \left\{ \left(\frac{r}{2} \left[\rho(F(-k + c_1)) \right]^{n-n_{r-b}^b} \right) \right\} \int_{c_1-k}^{\infty} [4F(y)(1-F(y))]^b dy \]
\[\text{(3.18)} \]

where \(c_{k1}^{c} < \infty \) is given by (2.37) and \(b \) is any number satisfying \(b > 1/\ell \). Since \(c_1 > k \), it holds \(F(c_1 - k) > F(0) = \frac{1}{2} \), so that \(\rho(F(c_1 - k)) < 1 \) and hence, \(n^{r/2} (F(c_2 - k))^{n-n_{r-b}^b} \) is uniformly bounded for \(n \geq n_r \) and converges to 0 as \(n \to \infty \). Finally, \(\int_{c_1-k}^{\infty} (4F(y)(1-F(y)))^b dy < \infty \) by (2.36) and (2.37). Hence, \(I_{n2} < \infty \) uniformly in \(n \geq n_r \) and it converges to 0 as \(n \to \infty \). This completes the proof of the theorem.

LEMMA 3.4. Under the regularity conditions on \(\psi \) and \(F \),
\[\sqrt{n}(M_n - \theta) - \frac{1}{\gamma(M)} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi(X_i - \theta) = 0 (n^{-1/4}) \]
\[\text{(3.19)} \]
where \(\gamma(M) \) is defined by (2.14).

PROOF. The Lemma was proved in Jurečková (1980) [Theorem 3.3].

LEMMA 3.5. Under the regularity conditions on \(\psi \) and \(F \) of Section 2, the sequence \(|n^{-1/2} \sum_{i=1}^{n} \psi(X_i - \theta)|^{2r} \) is uniformly integrable for \(n = 1, 2, \ldots \) and
\[E_0 |n^{-1/2} \sum_{i=1}^{n} \psi(X_i - \theta)|^{2r} \to \sigma_{(M)}^{2r} (2r)! \] \[\text{as } n \to \infty, \text{ where } \sigma_{(M)} \text{ is defined by (2.13).} \]
\[\text{(3.20)} \]

PROOF. Since \(E_0 \psi(X_1 - \theta) = 0 \) and \(|\psi(y)| \leq \psi(k) < \infty, \forall y \in R \), moments of all orders of \(\psi(X_1 - \theta) \) exist. Hence, the result follows directly from the moment convergence result of von Bahr (1965).
THEOREM 3.2. Under the regularity conditions (2.29) - (2.34),
\[
\lim_{n \to \infty} E \left(\sqrt{n} |M_n - \theta| \right)^{2r} = (\sigma(M)^{2r}/\gamma(M)^{2r})(2r)!/(2^r r!)
\] (3.21)
holds for \(r = 1, 2, \ldots \).

PROOF. It follows directly from the uniform integrability in Theorem 3.1, from (3.19) and from Lemma 3.5. In fact, we need not confine ourselves to even integer \(2r \). Since, by the Jensen inequality,
\[
|n^{-1/2r} \sum_{i=1}^{n} \psi(X_i - \theta)|^r
\]
is uniformly integrable for any \(r' \in [2r-2, 2r] \),
we may prove on parallel lines that as \(n \to \infty \),
\[
E_\theta(\sqrt{n} |M_n - \theta|)^r \to (\sigma(M)/\gamma(M))^r \int_{-\infty}^{\infty} |z|^r d\phi(z)
\] (3.22)
for any fixed real \(r > 0 \).

LEMMA 3.6. For any \(\epsilon > 0 \) and \(\delta > 0 \), there exist positive constants \(c \) and \(n_0 \) such that
\[
P\{ |s_n^2 - \sigma_0^2| > \epsilon \} \leq cn^{-1-\delta}, \forall n \geq n_0.
\] (3.23)

PROOF. Let us define
\[
s_n^{02} = n^{-1/2r} \sum_{i=1}^{n} \psi^2(X_i - \theta), \quad n \geq 1.
\] (3.24)
Since \(\psi^2(X_i - \theta), \quad i = 1, \ldots, n \), are i.i.d. bounded valued r.v., by Theorem 1 of Hoeffding (1963), for every \(\epsilon > 0 \) there exists an \(n > 0 \) such that
\[
P\{ |s_n^{02} - \sigma_0^2| > \epsilon/2 \} \leq 2e^{-2n\eta}, \forall n \geq 1.
\] (3.25)

Again, by virtue of Theorem 3.1,
\[
P\{ |M_n| > \epsilon \} = P\{ \sqrt{n} |M_n| > \epsilon/2\sqrt{n} \} \leq cn^{-1-\delta}, \forall n \geq n_0.
\] (3.26)
By (2.32) - (2.34), \(\psi^2 \) is of bounded variation on \(\mathbb{R} \), so that
\[
\psi^2(y) = \psi_1^*(y) + \psi_2^*(y),
\] (3.27)
where \(\psi_1^*, \psi_2^* \) are nonnegative and \(\psi_1^* \) is \(\downarrow \) while \(\psi_2^* \) is \(\uparrow \) in \(y \in \mathbb{R} \). Hence,
\[
\sup_{|t| \leq \frac{1}{2}\epsilon} |\psi^2(y + t) - \psi^2(y)| \leq |\psi_1^*(y - \frac{1}{2}\epsilon) - \psi_1^*(y + \frac{1}{2}\epsilon)| + |\psi_2^*(y + \frac{1}{2}\epsilon) - \psi_2^*(y - \frac{1}{2}\epsilon)|.
\] (3.28)
Since, by (2.33), \(\psi_1^* \) and \(\psi_2^* \) are bounded, by using (3.28) and the Markov inequality, we obtain that for every \(\varepsilon' > 0 \),

\[
P\left\{ \sup_{|t| \leq \varepsilon} \left| \frac{1}{n^2} \sum_{i=1}^{n} \psi^2(X_i + t) - \frac{1}{n^2} \psi^2(X_i) \right| > \frac{1}{2} \varepsilon' \right\} \leq c'n^{-1-\delta} \quad \forall \ n \geq n_0. \tag{3.29}
\]

(3.23) then follows from (2.13), (2.15), (3.24), (3.25), (3.26) and (3.29). Q.E.D.

THEOREM 3.3. Under the regularity conditions of (2.29) - (2.34), for every \(\varepsilon > 0 \) and \(\delta > 0 \), there exist a \(C, 0 < C < \infty \) and an \(n_0 < \infty \) such that

\[
P\{ |\hat{\nu}_{n}(M) - \nu(M)| > \varepsilon \} \leq C n^{-1-\delta} \quad \forall \ n \geq n_0. \tag{3.30}
\]

PROOF. Since \(\psi \) is nondecreasing, exploiting technique of Jurečková (1969), we obtain that for every fixed \(K < \infty \) and \(\varepsilon > 0 \), there exist an \(m(= m_K) \) and a set of points \(-K =: t_0 < \cdots < t_m (\leq K) \) such that

\[
\sup_{|t| \leq K} |n^{-\frac{k}{2}}[S_n(n^{-\frac{k}{2}}t) - S_n(0)] + t \gamma(M)|
\]

\[
\leq \max_{0 \leq j \leq m} |n^{-\frac{k}{2}}[S_n(n^{-\frac{k}{2}}t_j) - S_n(0)] + t_j \gamma(M)| + \varepsilon/2
\]

\[
\leq \max_{1 \leq j \leq m} |n^{-\frac{k}{2}}[S_n(n^{-\frac{k}{2}}t_j) - S_n(0)] - \sqrt{n} \mu_n(t_j)|
\]

\[
+ \max_{1 \leq j \leq m} |\sqrt{n} \mu_n(t_j) + t_j \gamma(M)| + \varepsilon/2, \tag{3.31}
\]

where \(\mu_j(t) \) is defined by (3.5) and

\[
\sup_{|t| \leq K} |\sqrt{n} \mu_n(t) + t \gamma(M)| \longrightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \tag{3.32}
\]

The random variables \(Z_{ni}^{(j)} = \psi(X_i - n^{-\frac{k}{2}}t_j) - \psi(X_i) - E\psi(X_i - n^{-\frac{k}{2}}t_j) \), \(i = 1, \ldots, n \) are independent for any fixed \(j(= 1, 2, \ldots, m) \) and

\[
E Z_{ni}^{(j)} = 0, \quad E (Z_{ni}^{(j)})^2 = 0(n^{-\frac{k}{2}}). \]
Proceeding as in Theorem 3.1 of Jurečková and Sen (1980b), we claim that under (2.32) - (2.34),

\[E[Z_{ni}^{(j)}]^{2q} = O(n^{-q/2}) \text{ for } q = 1, 2, \ldots \]

Thus, by Markov inequality,

\[P \left\{ \max_{1 \leq j \leq m} \left| \hat{S}_n^{(j)} - \mu_n(t_j) \right| > \varepsilon \right\} \leq \sum_{j=1}^{m} P \left\{ \left| \hat{S}_n^{(j)} - \mu_n(t_j) \right| > \varepsilon \right\} = O(n^{-q/2}) \]

where, given \(\delta \), we may choose \(q \) so large that \(q/2 \geq 1 + \delta \). From (3.31), (3.32) and (3.34), we obtain that for every \(\varepsilon > 0 \), \(\delta > 0 \),

\[P \left\{ \sup_{|t| \leq K} |S_n^{(j)} - \mu_n(t_j)| + t(Y_j) > \varepsilon \right\} \leq c n^{-1-\delta}, \quad \forall \ n \geq n_0 \]

and (3.31) follows readily from (3.23), (2.15) - (2.18) and (3.35).

Q.E.D.

4. MOMENT CONVERGENCE OF L-ESTIMATORS

First, we consider the following theorem on a.s. representation of \(\tilde{L}_n \).

THEOREM 4.1. Let \(\tilde{L}_n \) be an L-estimator of the form (2.20) with \(c_{ni}, 1 \leq i \leq n \), satisfying (2.21) and (2.38). Let d.f. \(F \) have the absolutely continuous symmetric density satisfying (2.29) and (2.41). Then, for any \(n \geq n_0 \), there exists a sequence \(\{Y_{ni}\}_{i=1}^{n+1} \) of i.i.d. random variables with standard normal distribution such that

\[|n^{1/2} (\tilde{L}_n - \theta) - (n+1)^{-1/2} \sum_{j=1}^{n+1} a_{nj} Y_{nj}| \text{ a.s.} = 0(n^{-1/2} \log n) \text{ as } n \to \infty, \]

where

\[a_{nj} = \sum_{i=1}^{n} b_{ni} - \sum_{i=1}^{n+1} \frac{1}{n+1} b_{ni}, \quad b_{ni} = \frac{c_{ni}}{f(F^{-1}(\frac{i}{n+1}))}, \quad 1 \leq i \leq n. \]

PROOF. We may put \(\theta = 0 \) without loss of generality. Note that by (2.29) and (2.41), for every \(\beta \in (0, \frac{1}{2}) \),
\[
\sup_{F^{-1}(\beta) \leq x \leq F^{-1}(1-\beta)} \{ F(x)[1 - F(x)] \cdot \left| \frac{f'(x)}{f^2(x)} \right| \} \\
\leq \left[\frac{4}{f^2(F^{-1}(\beta))} \right] \sup_{F^{-1}(\beta) \leq x \leq F^{-1}(1-\beta)} \left| f'(x) \right| \leq \gamma_\beta < \infty
\]

(4.3)

where \(\gamma_\beta (> 0) \) may depend on \(\beta \). As such, the condition (3.2) in Theorem 6 of Cz"{o}rg"{o} and R"{e}v"{e}sz (1978) holds for the case of \(F^{-1}(\beta) \leq x \leq F^{-1}(1-\beta) \), and hence, we may virtually repeat the proof of their Theorem 3 [using our (4.3) instead of their more stringent (3.2)] and claim that for every \(n(n \geq n_0) \), there exists a Brownian Bridge \(\{ B_n(t): 0 \leq t \leq 1 \} \) such that

\[
\sup_{F^{-1}(\beta) \leq x \leq F^{-1}(1-\beta)} \left| f(x)q_n(x) - B_n(F(x)) \right| \text{a.s., } 0(n^{-\frac{1}{2}} \log n) \quad (4.4)
\]

where

\[
q_n(x) = n^{\frac{1}{2}} [X_{n,i} - F^{-1}(F(x))] \text{ for } \frac{i-1}{n} < F(x) \leq \frac{i}{n}, \; 1 \leq i \leq n. \quad (4.5)
\]

By (4.4), (4.5), we have for \(n \to \infty \)

\[
\max_{k_n+1 \leq i \leq n-k_n} \left| \sqrt{n} \left[X_{n,i} - F^{-1}\left(\frac{i}{n+1}\right) \right] - B(i/(n+1))f(F^{-1}(i/(n+1))) \right| \text{ a.s., } 0(n^{-\frac{1}{2}} \log n), \quad (4.6)
\]

so that by (2.20), (2.21) and (2.38),

\[
\left| \sqrt{n} L_n - \sum_{i=1}^{n} b_{n,i} B(i/(n+1)) \right| \text{ a.s., } 0(n^{-\frac{1}{2}} \log n) \quad (4.7)
\]

with \(b_{n,i} \) given by (4.2).

\(\{ W_n(t) = (t+1)B_n\left(\frac{t}{t+1}\right): t \in \mathbb{R}^+ \} \) is a standard Wiener process on \(\mathbb{R}^+ \), thus there exist \(\{ Y_{n,i} \}_{i=1}^{n+1} \) of i.i.d. random variables with the standard normal distribution such that \(W_n(m) = \sum_{i=1}^{m} Y_{n,i}, \; m = 12, \ldots \).

Therefore,

\[
\sqrt{n+1} B_n\left(\frac{i}{n+1}\right) = \sqrt{n+1}[W_n\left(\frac{i}{n+1}\right) - \frac{i}{n+1}W_n(1)]
\]

\[
= W_n(i) - \frac{i}{n+1}W_n(n+1) = \sum_{j=1}^{i} Y_{n,j} - \frac{i}{n+1} \sum_{j=1}^{n+1} Y_{n,j}, \quad (4.8)
\]

\[i = 1, 2, \ldots, n, \]
so that
\[
\frac{r^n}{n+1} B\left(\frac{i}{n+1}\right) = \frac{1}{\sqrt{n+1}} L_{i=1}^{n+1} b_i \left[L_{j=1}^{n+1} Y_{nj} + \frac{i}{n+1} L_{j=1}^{n+1} Y_{nj} \right] = \frac{1}{\sqrt{n+1}} \sum_{j=1}^{n+1} a_j Y_{nj}.
\]

(4.9) then follows from (4.7) and (4.9). Q.E.D.

Lemma 4.1. Under (2.21), (2.38)-(2.41) and (2.42), it holds for any positive integer \(r \),
\[
\lim_{n \to \infty} E\left[\frac{1}{\sqrt{n+1}} L_{j=1}^{n+1} a_j Y_{nj} \right]^{2r} = \nu_{(L)}^2 (2r)! \frac{(2r)!}{r! 2^r}
\]

where \(\nu_{(L)}^2 \) is defined by (2.25).

Proof. Note that \((n+1)^{-1} L_{j=1}^{n+1} a_j Y_{nj} \) have a normal distribution with mean zero and variance
\[
(n+1)^{-1} \sum_{j=1}^{n+1} a_j^2 \nu_{(L)}^2, \text{ say.}
\]

To prove (4.10), it thus suffices to show that
\[
\lim_{n \to \infty} \nu_{(L)}^2 = \nu_{(L)}^2,
\]
but it readily follows from (4.2), (2.21), (2.38)-(2.40).

Lemma 4.2. Under the assumptions of Theorem 4.1, for any positive integer \(r \), there exists a \(C_r > 0 \) and an integer \(n_r \) such that
\[
E_0 \left(\frac{r^n}{n} \right)^{2r} \leq C_r < \infty \quad \forall \ n \geq n_r.
\]

Proof. Regarding (2.20) and the fact that \(\sum_{i=1}^{n} c_{ni} F^{-1} \left(\frac{i}{n+1} \right) = 0 \), we get by Jensen inequality that under \(\theta = 0 \),
\[
\left(\frac{r^n}{n} \right)^{2r} \leq \left(\frac{r^n}{n} \right)^{2r} \leq \left(\sum_{i=1}^{n} c_{ni} \sqrt{n} \left| X_{ni} - F^{-1} \left(\frac{i}{n+1} \right) \right| \right)^2 r
\]

\[
\leq \sum_{i=1}^{n} c_{ni} \left(\sqrt{n} \left| X_{ni} - F^{-1} \left(\frac{i}{n+1} \right) \right| \right)^2 r
\]

so that
\[
E_0 \left(\frac{r^n}{n} \right)^{2r} \leq \sum_{i=k+1}^{n} c_{ni} E \left(\sqrt{n} \left| X_{ni} - F^{-1} \left(\frac{i}{n+1} \right) \right| \right)^2 r < C_r < \infty
\]

holds for \(n \geq n_r \), as it follows from Theorem 2 of Sen (1959).
THEOREM 4.2. Let L_n be an L-estimator of the form (2.20) with the coefficients satisfying (2.21), (2.38) - (2.41). Let d.f. F have the absolutely continuous symmetric density satisfying (2.29) and (2.42). Then, for every positive integer $r,$
\[\lim_{n \to \infty} \frac{\sqrt{n} (L_n - \theta)}{\sigma(L)} = \sigma_1 \frac{(2r)!}{2^r (2r)!}. \quad (4.15) \]

PROOF. It follows directly from Theorem 4.1, Lemma 4.1 and Lemma 4.2.

Let $\sigma^2(L)$ be the asymptotic variance (2.25) of $\sqrt{n} (L_n - \theta)$ and let $\hat{\sigma}^2(L)$ be its estimator (2.26). Then we shall need the following

THEOREM 4.3. Under the assumptions of Theorem 4.2, to any $\varepsilon > 0$ and $\delta > 0$, there exist $C > 0$ and n_0 such that, for $n \geq n_0,$
\[P\{ |\hat{\sigma}^2(L) - \sigma^2(L)| > \varepsilon \} \leq C \cdot n^{1-\delta}. \quad (4.16) \]

PROOF. Let F_n be the empirical d.f. of X_1, \ldots, X_n. Then by (2.25), (2.26), (2.39) and (2.40),
\[\hat{\sigma}^2(L) - \sigma^2(L) = \int \int \left\{ \left[F_n(x) - F_n(y) \right] \sigma^2_n(x,y) \cdot \sigma^2_n(x,y) - \left[F(x) - F(y) \right] \sigma^2(x,y) \cdot \sigma^2(x,y) \right\} dx dy. \quad (4.17) \]

Now, for every $\eta > 0,$
\[P\{ \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| > \eta \} \leq 2e^{-2\eta^2}, \forall \ n \geq 1, \quad (4.18) \]
\[P\{ X_{n,k+1} < F^{-1}(\alpha_1) - \eta \} + P\{ X_{n,n-k} > F^{-1}(1 - \alpha_0) + \eta \} \leq [\rho(\eta)]^n, \forall \ n \geq 1, \quad (4.19) \]

where $0 < \rho(\eta) < 1$. Also, excepting at countably many points (with Lebesgue measure 0), $J(t)$ has a derivative (with respect to t) inside $[\alpha_0, 1 - \alpha_0]$ and $\sup\{|J(t)|: \alpha_0 \leq t \leq 1 - \alpha_0 \} \leq K < \infty$. Thus, by (4.19) and the fact that $c_{n_i} - c_{n_i+1} = 0$, $\forall i \leq k_n$, with probability $\geq 1 - 2[\rho(\eta)]^n$, we may replace the domain \mathbb{R}^2 in (4.17) by $\{ F^{-1}(\alpha_0) - \eta, F^{-1}(1 - \alpha_0) + \eta \}^2$, while on this compact region, (4.18),
(2.39) - (2.40) and the boundedness of $|J(t)|$ lead us to the desired result when $J(t)$ is continuous inside $[\alpha_0, 1 - \alpha_0]$. Next, let us suppose that $J(t)$ has only a finite number of saltus on $[\alpha_0, 1 - \alpha_0]$. Excluding small neighborhoods of these saltus points, repeating the above proof and finally using the boundedness of $|J(t)|$ for these neighborhoods, the proof follows. Finally, $J(t)$ is a function of bounded variation, and hence, for any $\eta > 0$, $J(t)$ can have only a finite number of points of discontinuities at which its saltus is greater than η. Therefore, the proof for the case of a finite number of points of discontinuity extends to that of a countable number. Q.E.D.

5. PROPERTIES OF SEQUENTIAL M- AND L-ESTIMATORS

Let X_1, X_2, \ldots be i.i.d. random variables distributed according to the d.f. $F(x - \theta)$ such that F is symmetric and satisfies regularity conditions (2.29) - (2.31). Unless otherwise stated, T_n will denote either M-estimator generated by the ψ-function satisfying (2.32) - (2.35) or the L-estimator with the coefficients satisfying (2.21), (2.38) - (2.41). ν^2 will denote the asymptotic variance of $\sqrt{n}(T_n - \theta)$ and $\hat{\nu}_n^2$ its estimator (2.15) or (2.26), respectively. Let N_c be the stopping variable defined in (2.6) and let T_{n_c} be the estimator based on X_1, \ldots, X_{N_c}.

THEOREM 5.1. Under regularity conditions of Section 2, for any $h > 0$ (in (2.6)),

$$\frac{N_c}{n_0(c)} \xrightarrow{P} 1 \quad \text{and} \quad \frac{E(N_c/n_0(c))}{\nu} \xrightarrow{\text{a.s.}} 1 \quad \text{as} \quad c \to 0 \quad (5.1)$$

where $n_0(c)$ is defined by (2.5);

$$\sqrt{n_0(c)}(T_{n_c} - \theta)/\nu \xrightarrow{\text{d}} N(0, 1) \quad (5.2)$$

and

$$\lim_{c \to 0} \frac{\lambda^*(a, c)/\lambda_{n_0(c)}(a, c)}{c} = 1 \quad (5.3)$$
where $\lambda^*(a, c)$ and $\lambda_{n_0}(c)$ are given by (2.7) and (2.4), respectively.

PROOF. Put $b = \left(\frac{a}{c} \right)^{1/2}$, so that $b \to \infty$ as $c \to 0$. Then, by (2.6),

$$N_c \geq b^{1/(1+h)} \text{ with probability 1.} \quad (5.4)$$

For every $c > 0$ and $\varepsilon : 0 < \varepsilon < 1$, put

$$n^*_c = \lfloor b^{1/(1+h)} \rfloor, \quad n_{1c} = \lfloor n_0(c)(1-\varepsilon) \rfloor \quad \text{and} \quad n_{2c} = \lfloor n_0(c)(1+\varepsilon) \rfloor \quad (5.5)$$

where we choose c so small that $n^* \leq n^*_c < n_{1c} < n_0(c) < n_{2c}$. Then, by (2.6), Theorem 3.3 and Theorem 4.3 (on noting that $n/b \leq \nu(1-\varepsilon)$, $\forall \ n \leq n_{1c}$), as $c \to 0$,

$$P\{N_c \leq n_{1c}\} = P\{\nu_n \leq n/b, \text{ for some } n: n^*_c \leq n \leq n_{1c}\} \leq P\{\nu_n \leq \nu(1-\varepsilon), \text{ for some } n: n^*_c \leq n \leq n_{1c}\} \leq \sum_{n=n^*_c}^{n_{1c}} P\{\nu_n - \nu > \varepsilon\} = O\left((n^*_c)^{-\delta} \right) = O\left(c^{\delta}/(2(1+h)) \right) \to 0. \quad (5.6)$$

Similarly, noting that $n/b \geq \nu(1+\varepsilon)$, $\forall \ n \geq n_{2c}$, we have for $n \geq n_{2c}$,

$$P\{N_c \geq n\} = P\{m < b(\nu_n + m^{-h}), \forall \ n \leq m \leq n\} \leq P\{\nu_n - \nu < n\} \quad \text{(where } n > 0) \leq P\{\nu_n - \nu > n\} = O(n^{-1-\delta}) \quad \text{by Theorems 3.3 and 3.4.} \quad (5.7)$$

Then (5.6) and (5.7) imply that $N_c/n_0(c) \to 1$ as $c \to 0$. Moreover, if $n \leq n_{1c}$, then $n/n_0(c) < 1-\varepsilon$ and, by (5.7),

$$E\{N_c \cdot I(N_c > n_{2c})\}/n_0(c) \to 0. \quad \text{as } c \to 0, \quad \text{so that } (EN_c)/n_0(c) \to 1 \text{ as } c \to 0. \quad \text{This proves (5.1).}$$

Lemma 3.4 and Theorem 4.1 ensure that the distribution of

$$\{n^{1/2}(T_n - \theta)\} \text{ is asymptotically normal, } N(0, \nu^2) \text{ as well as the}

'uniform continuity in probability' of this sequence in the sense of Anscombe (1952). Hence, (5.2) follows from Anscombe's (1952) theorem.

Finally, to prove (5.3), we may follow the ideas of the proof of Theorem 3.2 of Sen (1980), where the Lemmas 3.1-3.6, 4.1, 4.2 and Theorem 3.1-3.3, 4.1-4.3 of Sections 3 and 4 provide the analogous
tools to apply the same technique in the current context. Hence, for
intended brevity, the details are omitted. Q.E.D.

It has been proved by Jurecková and Sen (1980 a, b) that

\[L \{ n^d (\hat{\nu}_n(M) - \nu(M)) / \beta \} \rightarrow N(0, 1) \quad \text{as} \quad n \rightarrow \infty \]

(5.8)

and

\[\sup_{m: |m-n|<\delta n} \{ n^d |\hat{\nu}_n(M) - \nu_n(M)| \} \overset{p}{\rightarrow} 0 \quad \text{as} \quad \delta \rightarrow 0 \]

(5.9)

where \(\nu(M) \) and \(\nu_n(M) \) are given by (2.13) and (2.18), respectively,
\(\psi = \psi_1 + \psi_2 \) with \(\psi_1 \) being the absolutely continuous component and
\(\psi_2 \) the step-function component and where \(d = \frac{1}{2} \) if \(\psi_2 \equiv 0 \) and \(d = \frac{1}{4} \) if \(\psi_2 \neq 0 \), and

\[\beta^2 = \begin{cases}
\frac{\sigma_2^2}{\sigma_1^2} + \frac{\nu^2 \sigma_1^2}{\sigma_1^2} - \frac{\tilde{\zeta}}{\gamma_1} \sigma_1^2 & \text{if} \quad d = \frac{1}{2} \\
\frac{\sigma_2^2}{\sigma_1^2} \sum_{j=1}^{m} (\beta_j - \beta_{j-1})^2 f(a_j) & \text{if} \quad d = \frac{1}{4}
\end{cases} \]

(5.10)

where

\[\sigma_2^2 = \int_{-\infty}^{\infty} \psi^4(x) dF(x) - \sigma_1^4, \quad \sigma_1^2 = \int_{-\infty}^{\infty} (\psi'(x))^2 dF(x) - \gamma_1(M) \]

(5.11)

\[\tilde{\zeta} = \int_{-\infty}^{\infty} \psi^2(x) \psi'(x) dF(x) - \sigma_1^2 \gamma_1(M) \]

(5.12)

(in the case \(\psi \equiv \psi_1 \), where \(\sigma_2^{(M)} \) and \(\gamma_1(M) \) are given by (2.13)
and (2.14), respectively), and \(a_1, \ldots, a_m \) are the jump-points of \(\psi_2 \)
with jumps \((\beta_j - \beta_{j-1}) \), \(1 \leq j \leq m \).

THEOREM 5.2. If the constant \(h \) in (2.6) satisfies \(h > d \), then,
under the regularity conditions on \(F \) and \(\psi \) of Section 2, as \(c \rightarrow 0 \),

\[L \{ (n_0(c))^d [(N_c^{(M)}/n_0(c)) - 1] \} \rightarrow N(0, \beta^2 / \nu^2). \]

(5.13)

PROOF. Note that by (2.6), whenever \(N_c > n' \),

\[b_0 N_c \leq N_c \leq b (\hat{\nu}_{N_c-1} + (N_c - 1)^{-h}) \]

(5.14)

so that if we put \(n_{0c} = [bv] + 1 \), we get from (2.5) and (5.14)
whenever $N_c > n'$. Now, by Theorem 5.1, $N_c/n_{0c} \xrightarrow{p} 1$, while for $d < h$, $n_{0c}^d (N_c - 1)^{-h} \rightarrow 0$ as $c \rightarrow 0$, and
\[b^{-1} n_{0c}^d \sim \nu_{0c}^{1+d}, \text{ as } c \rightarrow 0. \tag{5.16} \]

Thus, regarding that $n_0(c) \sim n_{0c}$, (5.13) follows from (5.8), (5.9), (5.15) and (5.16). Q.E.D.

REMARK. Theorem 5.2 shows that, if $\psi_2 \equiv 0$, the rate of convergence to the asymptotic normal distribution in (5.13) is faster than in the case $\psi_2 \equiv 0$.

Let us now consider the asymptotic distribution of the stopping variable corresponding to the L-estimator. Gardiner and Sen (1979) proved
\[L\{n^{1/2} [\hat{\nu}(L) - \nu(L)] \} \rightarrow N(0, \kappa^2/(4\nu^2(L))) \text{ as } n \rightarrow \infty \tag{5.17} \]
and
\[\sup_{m: |m-n| < \delta n} \{n^{1/2} [\hat{\nu}_m(L) - \hat{\nu}_n(L)] \} \xrightarrow{p} 0 \text{ as } \delta \rightarrow 0 \tag{5.18} \]
where ν^2_L and $\hat{\nu}_n^2(L)$ are given by (2.25) and (2.26), respectively, and
\[\kappa^2 = \int_0^1 \int_0^1 (s \wedge t - st) L_0(s)L_0(t) dF(s)dF(t) \tag{5.19} \]
with
\[L_0(t) = L_1(t) J_1'(1-t) - L_1(1-t) J_1'(1-t), \quad 0 \leq t \leq 1 \tag{5.20} \]
and
\[J_1'(t) = t \cdot J(t), \quad L_1(t) = 2 \int_0^{1-t} u J(u) dF^{-1}(u), \quad 0 \leq t \leq 1. \tag{5.21} \]

THEOREM 5.3. If the constant h in (2.6) satisfies $h > \frac{1}{2}$, then, under the regularity conditions on F and J of Section 2, as $c \rightarrow 0$,
\[L\{n_0^{1/2}(c) [\nu_0^{(L)}(c)/n_0(c) - 1] \} \rightarrow N(0, (\kappa^2/4\nu^4(L))). \tag{5.22} \]
PROOF. (5.22) follows from (5.17) and (5.18) similarly as in the proof of Theorem 5.2.

6. ASYMPTOTIC MINIMAX PROPERTY OF SEQUENTIAL M- AND L-ESTIMATORS

Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. random variables distributed according to d.f. \(F(x - \theta) \) where \(F \) is symmetric but generally unknown; \(F \) is only supposed to belong to an appropriate neighborhood \(F \) of a given d.f. \(G \). Suppose that the loss incurred in estimating \(\theta \) by \(T_n \) is given by (2.3). Let \(T \) denotes the set of sequences \(\{T_n\} \) of translation equivariant estimators, asymptotically normally distributed and such that the minimum asymptotic risk (2.5) exists and satisfies

\[
\lim_{c \to 0} \left(\frac{\lambda_n^2(c)}{(4ac)} \right) = 0
\]

(6.1)

where \(\lambda_n^2(c) \) is the asymptotic variance of \(\sqrt{n}(T_n - \theta) \) if \(F(x - \theta) \) is the underlying d.f., and for which there exists sequential point estimation procedure \(T_n \) with the risk satisfying

\[
\lim_{c \to 0} \left(\frac{\lambda^*(c)}{\lambda_n^0(c)(a, c)} \right) = 1.
\]

(6.2)

Then we may consider the limit

\[
e(T_n, F) = \lim_{c \to 0} \frac{\sqrt{c}}{\lambda^*(c)}
\]

(6.3)

as a measure of efficiency of the sequential point estimator \(T_n \) if \(F \) is the underlying distribution.

Similarly as in the non-sequential estimation procedures, for an appropriate family \(F \) of distributions, there may exist an M- or L-estimator providing the saddle-point of the function (6.3) over \(T \times F \). We shall formulate such result for the case that \(F \) represents
the contaminated distribution G; it is an extension of the Huber's (1964) result to the sequential case.

Let F^*_1 be the set of distribution functions

$$F^*_1 = \{ F = (1 - \varepsilon) G + \varepsilon H : \ H \in H \}$$

(6.4)

where $\varepsilon \in [0,1)$ is a fixed number, G is a symmetric d.f. which has twice continuously differentiable density g, g is strongly unimodal, \(I(G) < \infty \) and \(\int |x|^L dG(x) < \infty \) for some $L > 0$, while H is the set of all absolutely continuous symmetric d.f.'s with \(\int |x|^L dH(x) < \infty \) for some $L > 0$. Then, for the M- and L-estimators considered in this paper, (6.1) - (6.2) hold for $F \in F^*_1$. (6.1) - (6.2) also hold for the sample mean provided we assume that $F \in F^*_2$, where $F^*_2 = \{ F = (1 - \varepsilon) G + \varepsilon H : \ H \in H^*_2 \}$ and $H^*_2 = \{ H \in H : \int x^2 dH(x) < \infty \}$ while G satisfies the same condition as in (6.4). Further, for translation-equivariant U-statistics, (6.1) - (6.2) hold [c.f., Sen and Ghosh (1980)] for $F \in F^*_3 = \{ F : (1 - \varepsilon) G + \varepsilon H : \ H \in H^*_3 \}$ where H^*_3 is the class of all d.f.'s for which the kernel (generating the U-statistics) has finite L-th absolute moment for some $L > 2$). Finally, (6.1) - (6.2) hold for a general class of R-estimators [c.f. Sen (1980)] with absolutely continuous (but possibly unbounded) score function, provided $F \in F^*_4$ where F^*_4 is a sub-class of F^*_1 for which $\sup_x f(x)(F(x)[1 - F(x)])^{-S} < \infty$, for some $S > 1/6$. It is easy to verify that the intersection of F^*_1, F^*_2, F^*_3 and F^*_4 is a non-null set.

THEOREM 6.1. Let F^*_1 be the set of distributions defined in (6.4) and let T_1 be the set of sequential estimators satisfying (6.1) and (6.2) for $F \in F^*_1$. Then there exist a sequential M-estimator $T^{(1)}_{N,c}$ and a sequential L-estimator $T^{(2)}_{N,c}$ and $F_0 \in F^*_1$ such that
\[
e^{(T_{N_c}, F_0)} \leq e^{(T_{N_c}^{(i)}, F_0)} = [I(F_0)]^{\frac{1}{2}} \leq e^{(T_{N_c}^{(i)}, F)} \tag{6.5}
\]

holds for \(i = 1, 2, \forall T_{N_c} \in T_1 \) and \(F \in F_1^* \).

PROOF. It follows from Huber (1964) that the asymptotic variances of M-estimators with the \(\psi \)-functions satisfying (2.32) - (2.34) have a saddle-point which corresponds to the density

\[
f_0(x) = \begin{cases}
(1 - \varepsilon)g(k)e^{q(x+k)}, & x < -k \\
(1 - \varepsilon)g(x), & -k \leq x \leq k \\
(1 - \varepsilon)g(k)e^{-q(x+k)}, & k \leq x
\end{cases} \tag{6.6}
\]

and the corresponding minimax M-estimator is the maximum-likelihood estimator corresponding to \(f_0 \), i.e.,

\[
\psi_0(x) = -\frac{f_0'(x)}{f_0(x)}, \quad x \in \mathbb{R}, \text{ i.e.,} \tag{6.7}
\]

\[
\psi_0(x) = \begin{cases}
-q & \cdots x < -k \\
\frac{-g'(x)}{g(x)} -k < x < k \\
q & \cdots k < x
\end{cases} \tag{6.8}
\]

where \(q = -\frac{g'(k)}{g(k)} \) and \(k \) is related to \(\varepsilon \) according

\[
\frac{1}{1 - \varepsilon} = \int_{-k}^{k} g(t)dt + 2g(k)/k. \tag{6.9}
\]

It follows from Theorem 5.1 that the sequential M-estimator \(T_{N_c}^{(1)} \) corresponding to \(\psi_0 \) and to the stopping rule (2.19) is the solution of (6.5).

Moreover, it follows from Jaeckel (1971) that the L-estimator \(T_{n}^{(2)} \) corresponding to the weight function

\[
J_0(t) = [I(F_0)]^{-1} \cdot \psi_0(F_0^{-1}(t)), \quad 0 \leq t \leq 1 \tag{6.10}
\]
is asymptotically equivalent to $T_n^{(1)}$. The sequential L-estimator $T_n^{(2)}$ with the stopping rule $N_c(L)$ given by (2.28) is then an alternative solution of (6.5).
REFERENCES

