Joint Probability Distributions

In many experiments, two or more random variables have values that are determined by the outcome of the experiment.

For example, the binomial experiment is a sequence of trials, each of which results in success or failure.

If

\[X_i = \begin{cases} 1 & \text{if the } i^{\text{th}} \text{ trial is a success} \\ 0 & \text{otherwise,} \end{cases} \]

then \(X_1, X_2, \ldots, X_n \) are all random variables defined on the whole experiment.
To calculate probabilities involving two random variables X and Y such as

$$P(X > 0 \text{ and } Y \leq 0),$$

we need the *joint* distribution of X and Y.

The way we represent the joint distribution depends on whether the random variables are discrete or continuous.
Two Discrete Random Variables

If X and Y are discrete, with ranges R_X and R_Y, respectively, the joint probability mass function is

$$p(x, y) = P(X = x \text{ and } Y = y), x \in R_X, y \in R_Y.$$

Then a probability like $P(X > 0 \text{ and } Y \leq 0)$ is just

$$\sum_{x \in R_X: x > 0} \sum_{y \in R_Y: y \leq 0} p(x, y).$$
Marginal Distribution

To find the probability of an event defined only by X, we need the *marginal* pmf of X:

$$p_X(x) = P(X = x) = \sum_{y \in R_Y} p(x, y), x \in R_X.$$

Similarly the marginal pmf of Y is

$$p_Y(y) = P(Y = y) = \sum_{x \in R_X} p(x, y), y \in R_Y.$$
Two Continuous Random Variables

If X and Y are continuous, the joint probability density function is a function $f(x, y)$ that produces probabilities:

$$P[(X, Y) \in A] = \int \int_A f(x, y) \, dy \, dx.$$

Then a probability like $P(X > 0 \text{ and } Y \leq 0)$ is just

$$\int_0^\infty \int_{-\infty}^0 f(x, y) \, dy \, dx.$$
Marginal Distribution

To find the probability of an event defined only by X, we need the *marginal* pdf of X:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy, \quad -\infty < x < \infty.$$

Similarly the marginal pdf of Y is

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx, \quad -\infty < y < \infty.$$
Independent Random Variables

Independent Events

Recall that events A and B are independent if

$$P(A \text{ and } B) = P(A)P(B).$$

Also, events may be defined by random variables, such as $A = \{X \geq 0\} = \{s \in S : X(s) \geq 0\}$.

We say that random variables X and Y are independent if any event defined by X is independent of every event defined by Y.
Independent Discrete Random Variables

Two \textit{discrete} random variables are independent if their joint pmf satisfies

\[p(x, y) = p_X(x)p_Y(y), \quad x \in R_X, \quad y \in R_Y. \]

Independent Continuous Random Variables

Two \textit{continuous} random variables are independent if their joint pdf satisfies

\[f(x, y) = f_X(x)f_Y(y), \quad -\infty < x < \infty, \quad -\infty < y < \infty. \]

Random variables that are not independent are said to be \textit{dependent}.
More Than Two Random Variables

Suppose that random variables X_1, X_2, \ldots, X_n are defined for some experiment.

If they are all discrete, they have a *joint pmf*:

$$p(x_1, x_2, \ldots, x_n) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n).$$

If they are all continuous, they have a *joint pdf*:

$$P(a_1 < X_1 \leq b_1, \ldots, a_n < X_n \leq b_n) = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(x_1, \ldots, x_n) \, dx_n \ldots \, dx_1.$$
Full Independence

The random variables X_1, X_2, \ldots, X_n are independent if their joint pmf or pdf is the product of the marginal pmfs or pdfs.

Pairwise Independence

Note that if X_1, X_2, \ldots, X_n are independent, then every pair X_i and X_j are also independent.

The converse is not true: pairwise independence does not, in general, imply full independence.
Conditional Distribution
If X and Y are discrete random variables, then

$$P(Y = y | X = x) = \frac{P(X = x \text{ and } Y = y)}{P(X = x)} = \frac{p(x, y)}{p_X(x)}.$$

We write this as $p_{Y|X}(y|x)$.

If X and Y are continuous random variables, we still need to define the distribution of Y given $X = x$.

But $P(X = x) = 0$, so the definition is not obvious; however,

$$f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}$$

may be shown to have the appropriate properties.
Expected Value, Covariance, and Correlation

As you might expect, for a function of several discrete random variables:

$$E[h(x_1, \ldots, x_n)] = \sum_{x_1} \cdots \sum_{x_n} h(x_1, \ldots, x_n) p(x_1, \ldots, x_n)$$

For a function of several continuous random variables:

$$E[h(x_1, \ldots, x_n)] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h(x_1, \ldots, x_n) f(x_1, \ldots, x_n) \, dx_n \cdots dx_1.$$
Covariance

Recall the variance of X:

$$V(X) = E \left[(X - \mu_X)^2 \right].$$

The covariance of two random variables X and Y is

$$Cov(X, Y) = E \left[(X - \mu_X)(Y - \mu_Y) \right].$$

Note: the covariance of X with itself is its variance.
Correlation

Just as the units of $V(X)$ are the square of the units of X, so the units of $\text{Cov}(X, Y)$ are the product of the units of X and Y.

The corresponding dimensionless quantity is the correlation:

$$\text{Corr}(X, Y) = \rho_{X, Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} = \frac{\text{Cov}(X, Y)}{\sqrt{V(X) V(Y)}}.$$
Properties of Correlation

If \(ac > 0 \),
\[
\text{Corr}(aX + b, cY + d) = \text{Corr}(X, Y).
\]

For any \(X \) and \(Y \),
\[
-1 \leq \text{Corr}(X, Y) \leq 1.
\]

If \(X \) and \(Y \) are independent, then \(\text{Corr}(X, Y) = 0 \), but not conversely. That is, \(\text{Corr}(X, Y) = 0 \) does not in general mean that \(X \) and \(Y \) are independent.

If \(\text{Corr}(X, Y) = \pm 1 \), then \(X \) and \(Y \) are exactly linearly related:
\[
Y = aX + b \text{ for some } a \neq 0.
\]