The Distribution of the Sample Mean

Suppose that X_1, X_2, \ldots, X_n are a simple random sample from some distribution with expected value μ and standard deviation σ.

The most important parameter of most distributions is the expected value μ, and it is often estimated by the sample mean \bar{X}.

So the sampling distribution of the sample mean \bar{X} plays a central role in estimating μ.

Some aspects of that sampling distribution are known exactly, and for some others we have useful approximations for large n.
Mean and Standard Deviation

For any $n \geq 1$, the sampling distribution of \bar{X} has the properties:

$$E(\bar{X}) = \mu_{\bar{X}} = \mu;$$
$$V(\bar{X}) = \sigma^2_{\bar{X}} = \frac{\sigma^2}{n};$$

and hence the standard deviation of \bar{X} is

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}.$$
Normal Populations

If X_1, X_2, \ldots, X_n are a sample from a *normal* distribution, then for any $n \geq 1$, \bar{X} is also normally distributed.

We already know its expected value is μ and its standard deviation is σ/\sqrt{n}, so

$$\bar{X} \sim N \left(\mu, \frac{\sigma^2}{n} \right).$$

In particular, for any z,

$$P \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z \right) = \Phi(z).$$
Other Populations

If \(X_1, X_2, \ldots, X_n \) are a simple random sample from any distribution with expected value \(\mu \) and standard deviation \(\sigma \), then for large \(n \), \(\bar{X} \) is approximately normally distributed.

Again, we know its expected value is \(\mu \) and its standard deviation is \(\sigma / \sqrt{n} \), so

\[
\bar{X} \approx N \left(\mu, \frac{\sigma^2}{n} \right).
\]

The Central Limit Theorem states that the approximation holds in the limit:

\[
P \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \leq z \right) \to \Phi(z) \text{ as } n \to \infty.
\]
Binomial Distribution

We can use the Central Limit Theorem to approximate the binomial distribution.

Suppose that X_1, X_2, \ldots, X_n are the success indicators in a binomial experiment. That is, each is a Bernoulli variable with $P(X_i = 1) = p$ for some $0 < p < 1$.

Then

$$E(X_i) = p$$

and

$$V(X_i) = p(1 - p).$$
The Central Limit Theorem implies that for large n

\[P \left(\frac{\bar{X} - p}{\sqrt{p(1-p)/n}} \leq z \right) \approx \Phi(z). \]

So, if $X = X_1 + X_2 + \cdots + X_n = n\bar{X}$, then

\[P \left(\frac{X - np}{\sqrt{np(1-p)}} \leq z \right) \approx \Phi(z). \]

The approximation is improved by replacing $X - np$ by $X - np + 1/2$ (a continuity correction).
Distribution of a Linear Combination

The sample mean \bar{X} and the sample total $n\bar{X}$ are both examples of a linear combination of X_1, X_2, \ldots, X_n.

A general linear combination is of the form

$$Y = a_1X_1 + a_2X_2 + \cdots + a_nX_n$$

for some constants a_1, a_2, \ldots, a_n.

For example, \bar{X} is the special case $a_i = 1/n, i = 1, 2, \ldots, n$.
Mean and Variance
Suppose that

\[E(X_i) = \mu_i \text{ and } V(X_i) = \sigma^2_i, \quad i = 1, 2, \ldots, n. \]

Then

\[E(Y) = a_1 E(X_1) + a_2 E(X_2) + \cdots + a_n E(X_n) \]
\[= a_1 \mu_1 + a_2 \mu_2 + \cdots + a_n \mu_n \]

and, if \(X_1, X_2, \ldots, X_n \) are uncorrelated,

\[V(Y) = a_1^2 V(X_1) + a_2^2 V(X_2) + \cdots + a_n^2 V(X_n) \]
\[= a_1^2 \sigma^2_1 + a_2^2 \sigma^2_2 + \cdots + a_n^2 \sigma^2_n. \]
If X_1, X_2, \ldots, X_n are correlated, the variance becomes

$$V(Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \text{Cov}(X_i, X_j)$$

$$= \sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_i a_j \text{Cov}(X_i, X_j)$$

$$= \sum_{i=1}^{n} a_i^2 \sigma_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_i a_j \sigma_i \sigma_j \rho_{i,j}.$$

In the last expression, we use the definition

$$\rho_{i,j} = \text{Corr}(X_i, X_j) = \frac{\text{Cov}(X_i, X_j)}{\sigma_i \sigma_j}.$$
The proofs of these results are straightforward if tedious, and depend on nothing more than the fact that if $g(X_1, X_2, \ldots, X_n)$ and $h(X_1, X_2, \ldots, X_n)$ are any two functions of X_1, X_2, \ldots, X_n, then

$$E[g(X_1, X_2, \ldots, X_n) + h(X_1, X_2, \ldots, X_n)]$$
$$= E[g(X_1, X_2, \ldots, X_n)] + E[h(X_1, X_2, \ldots, X_n)].$$

The earlier statements about \bar{X}, that

$$E(\bar{X}) = \mu \text{ and } V(\bar{X}) = \frac{\sigma^2}{n},$$

are just the special case for uncorrelated X_1, X_2, \ldots, X_n and $a_i = 1/n, \mu_i = \mu, \sigma_i = \sigma, i = 1, 2, \ldots, n.$
Difference Between Two Variables

We often need to compare two measurements.

- For example,

\[X_1 = \text{blood pressure before taking a medication} \]
\[X_2 = \text{blood pressure 1 hour after taking medication} \]
\[Y = X_2 - X_1 = \text{change in blood pressure}. \]

This is the special case \(n = 2, a_1 = -1, a_2 = 1. \)
So

\[E(Y) = \mu_2 - \mu_1 \]

and

\[V(Y) = \sigma_1^2 + \sigma_2^2 - 2 \rho_{1,2} \sigma_1 \sigma_2 \]

and, if \(\rho_{1,2} = 0 \),

\[V(Y) = \sigma_1^2 + \sigma_2^2. \]

Note that when \(X_1 \) and \(X_2 \) are uncorrelated, the variances add, because \(a_1^2 = a_2^2 = 1 \).
Normal Variables

If X_1, X_2, \ldots, X_n are independent and *normally* distributed, then any linear combination

$$Y = a_1X_1 + a_2X_2 + \cdots + a_nX_n$$

is also normally distributed.

This general result includes as a special case the fact that \bar{X} is normally distributed when X_1, X_2, \ldots, X_n are independent and normally distributed.

A more general Central Limit Theorem states that Y is *approximately* normally distributed when n is large, provided no a_iX_i contributes substantially to the sum.