Implementing GLS

Recall the assumptions of Approach 9:

\[E(Y|\mathbf{x}) = f(\mathbf{x}, \boldsymbol{\beta}), \]
\[\text{var}(Y|\mathbf{x}) = \sigma^2 g(\boldsymbol{\beta}, \boldsymbol{\theta}, \mathbf{x})^2. \]

Here:

- \(\boldsymbol{\beta} \) is, as before, the vector of parameters in the mean function;
- \(\boldsymbol{\theta} \) is a possible additional parameter in the structure of the variance function;
- \(\sigma^2 \) is an additional dispersion parameter.
Ad hoc estimation scheme:

1. Get initial estimate of β using OLS;
2. Get initial estimate of θ, if needed, and construct initial estimated weights
 \[
 \hat{w}_j = \frac{1}{g\left(\hat{\beta}_{\text{OLS}}, \hat{\theta}, x\right)^2}
 \]
3. Re-estimate β using WLS, treating \hat{w}_j as fixed: solve the estimating equation
 \[
 \sum_{j=1}^{n} \hat{w}_j \{ Y_j - f(x_j, \beta) \} f_{\beta}(x_j, \beta) = 0.
 \]
Digression

Gauss-Newton method for WLS (including OLS):

The equation

\[\sum_{j=1}^{n} w_j \{ Y_j - f(x_j, \beta) \} f_\beta(x_j, \beta) = 0. \]

generally cannot be solved in closed form.

But if \(\beta^* \) is close to the solution \(\beta \),

\[
\begin{align*}
 f(x_j, \beta) &\approx f(x_j, \beta^*) + f_\beta(x_j, \beta^*)^T (\beta - \beta^*), \\
 f_\beta(x_j, \beta) &\approx f_\beta(x_j, \beta^*) + f_{\beta\beta}(x_j, \beta^*) (\beta - \beta^*)
\end{align*}
\]
Omitting terms likely to be small, the WLS estimating equation becomes

\[
\left\{ \sum_{j=1}^{n} w_j f_{\beta}(x_j, \beta^*) f_{\beta}(x_j, \beta^*)^T \right\} (\beta - \beta^*)
\approx \sum_{j=1}^{n} w_j \left\{ Y_j - f(x_j, \beta^*) \right\} f_{\beta}(x_j, \beta^*)
\]
Write

\[
\mathbf{X}(\beta) = \begin{pmatrix}
 \mathbf{f}_\beta(x_1, \beta)^T \\
 \vdots \\
 \mathbf{f}_\beta(x_n, \beta)^T
\end{pmatrix}
\]

\[
\mathbf{f}(\beta) = \begin{pmatrix}
 \mathbf{f}(x_1, \beta) \\
 \vdots \\
 \mathbf{f}(x_n, \beta)
\end{pmatrix}
\]

\[
\mathbf{W} = \begin{pmatrix}
 w_1 & 0 & \ldots & 0 \\
 0 & w_2 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & w_n
\end{pmatrix}
\]
Then the approximate equation may be written

\[
\{ \mathbf{X}(\beta^*)^T \mathbf{WX}(\beta^*) \} (\beta - \beta^*) \approx \mathbf{X}(\beta^*)^T \mathbf{W} \{ \mathbf{Y} - f(\beta^*) \}
\]

or (if the inverse exists)

\[
\beta \approx \beta^* + \left\{ \mathbf{X}(\beta^*)^T \mathbf{WX}(\beta^*) \right\}^{-1} \mathbf{X}(\beta^*)^T \mathbf{W} \{ \mathbf{Y} - f(\beta^*) \}
\]

Iterative solution:

\[
\beta_{(a+1)} = \beta_{(a)} + \left\{ \mathbf{X}(\beta_{(a)})^T \mathbf{WX}(\beta_{(a)}) \right\}^{-1} \mathbf{X}(\beta_{(a)})^T \mathbf{W} \{ \mathbf{Y} - f(\beta_{(a)}) \}
\]

Note that \(\mathbf{W} \) is fixed throughout the inner circle of iteration.
Note that if the iteration converges, \(\beta_{(a)} \to \beta_{(\infty)} \), and
\[
X(\beta_{(a)})^T WX(\beta_{(a)})
\] converges to a non-singular matrix, then
\[
X(\beta_{(\infty)})^T W \{ Y - f(\beta_{(\infty)}) \} = 0
\]
which is the original estimating equation written in matrix form.

That is, the limit \(\beta_{(\infty)} \) does solve the original WLS problem.

This algorithm, suitably refined, is the default method in both R’s \texttt{nls()} and SAS’s \texttt{proc nlin}.
Instead of the nested iterations, we could solve the last equation directly.

Note

This is *not* equivalent to minimizing

\[
S_g(\beta) = \sum_{j=1}^{n} \frac{1}{g(\beta, \theta, x_j)^2} \left\{ Y_j - f(x_j, \beta) \right\}^2,
\]

because differentiating \(S_g(\beta) \) w.r.t. \(\beta \) also brings in the derivative of \(g(\cdot) \).
The equation can be solved by a Gauss-Newton method; a similar approximation leads to the iteration

\[
\beta_{(a+1)} = \beta_{(a)} + \left\{ X(\beta_{(a)})^T W_{(a)} X(\beta_{(a)}) \right\}^{-1} X(\beta_{(a)})^T W_{(a)} \{ Y - f(\beta_{(a)}) \}
\]

where the weight matrix \(W \) is now updated using the current value of \(\beta_{(a)} \).

That is, the weights are updated within the iteration, instead of being held constant, as in the WLS iteration; a nonlinear instance of Iteratively Reweighted Least Squares, IRWLS (note the redundancy!) or IWLS.
Estimating σ^2

By analogy with WLS, the natural estimator of σ^2 is either

$$\frac{1}{n} \sum_{j=1}^{n} \frac{\left\{ Y_j - f(x_j, \hat{\beta}_{GLS}) \right\}^2}{g(\hat{\beta}_{GLS}, \theta, x_j)^2}$$

or

$$\frac{1}{n - p} \sum_{j=1}^{n} \frac{\left\{ Y_j - f(x_j, \hat{\beta}_{GLS}) \right\}^2}{g(\hat{\beta}_{GLS}, \theta, x_j)^2}.$$
For fixed weights, the latter is unbiased.

For fixed weights and Gaussian Y, the former is ML and the latter is REML.

The latter is reported by most software.
Summary

Model

\[E(Y|\mathbf{x}) = f(\mathbf{x}, \beta), \]
\[\text{var}(Y|\mathbf{x}) = \sigma^2 g(\beta, \theta, \mathbf{x})^2. \]

Generalized least squares (GLS)

\[\sum_{j=1}^{n} w_j \{ Y_j - f(\mathbf{x}_j, \beta) \} f_\beta(\mathbf{x}_j, \beta) = 0. \]
Motivation

- Loss function

\[S_g(\beta) = \sum_{j=1}^{n} w_j \left\{ Y_j - f(x_j, \beta) \right\}^2, \]

with plugged-in weights \(w_j = g(\beta, \theta, x_j)^{-2} \).

- Gaussian distribution with mean \(f(x_j, \beta) \) and plugged-in weights \(w_j \).
Implementations

3-step GLS

1. Get initial estimate $\hat{\beta}^{(0)}$
2. Repeat until convergence, or for a fixed number of C steps:
 1. Update the weights $\hat{w}_j = g(\hat{\beta}^{(t)}, x)^{-2}$
 2. Estimate β using WLS:
 Repeat until convergence

 $$\beta_{(a+1)} = \beta_{(a)} + \left\{ X(\beta_{(a)})^T WX(\beta_{(a)}) \right\}^{-1} X(\beta_{(a)})^T W \{ Y - f(\beta_{(a)}) \}$$

3. Update the estimate $\hat{\beta}^{(t+1)}$
Comment

- There are 2 loops
- In the inner loop (step 2.2), the weight matrix W is fixed
Implementations (continued)

Iteratively reweighted least squares (IRWLS)

1. Get initial estimate $\hat{\beta}^{(0)}$
2. Repeat until convergence:
 1. Update the weights $\hat{w}_j = g(\hat{\beta}^{(t)}, x)^{-2}$
 2. Estimate β using WLS

\[\beta_{(a+1)} = \beta_{(a)} + \left\{ X(\beta_{(a)})^T W_{(a)} X(\beta_{(a)}) \right\}^{-1} X(\beta_{(a)})^T W_{(a)} \left\{ Y - f(\beta_{(a)}) \right\} \]

3. Update the estimate $\hat{\beta}^{(t+1)}$
Comment

- There is only 1 loop
- The weight matrix W is *iteratively updated*