Satterthwaite’s formula

When you have random effects, there are occasions in which you have to combine mean squares to get a proper denominator. Consider a split plot in blocks with s levels of the split plot factor, t levels of the whole plot factor, and b blocks. The model is

\[Y_{ijk} = \mu + B_i + \tau_j + E(1)_{ij} + \gamma_k + (\tau \gamma)_{jk} + E(2)_{ijk} \]

Comparing 2 whole plot means within the same split plot we get a variance \(2V/r \) where \(r \) is the number of things averaged in each mean and \(V = \sigma_1^2 + \sigma_2^2 \) is the whole plot error variance plus the spit plot error variance (see note 1 below).

The error 1 (or error A) mean square estimates \(s\sigma_1^2 + \sigma_2^2 \) and the error 2 (or error B) mean square estimates \(\sigma_2^2 \) so that \([\text{MS}(1) + (s-1)\text{MS}(2)]/s \) estimates \(V \) and we can use the square root of that estimate as our standard error in getting a confidence interval, but what would be our degrees of freedom? Is it \(df_1 \) from error 1 or \(df_2 \) from error 2 or what? Satterthwaite suggested the following approximation (stat majors: we are dealing with a weighted average of two Chi-square variables here)

Write the linear combination of \(m \) mean squares as \(\sum_{i=1}^{m} a_i \text{MSE}(i) \)

The approximate degrees of freedom for that linear combination is

\[df = \left(\frac{\sum_{i=1}^{m} a_i \text{MSE}(i)}{\sum_{i=1}^{m} \frac{(a_i \text{MSE}(i))^2}{df_i}} \right)^2 \]

Note 1: \(\bar{Y}_{21} - \bar{Y}_{*11} = \tau_2 - \tau_1 + (\tau \gamma)_{21} - (\tau \gamma)_{11} + \bar{e}(1)_{*2} - \bar{e}(1)_{*1} + \bar{e}(2)_{*2} - \bar{e}(2)_{*1} \)

Both the whole and split plot error terms are averaged over the \(b \) blocks (or in general over the number of things you averaged in each sample mean) so the variance would be \(2(\sigma_1^2 + \sigma_2^2)/r \) where \(r \) is the number of observations averaged in each mean. In a split plot with just one whole plot factor as above, \(r \) is \(b \).

Note 2: In PROC GLM, I cannot specify an error term that is a mixture and so cannot get this computed within PROC GLM. In MIXED, I have to specify that the default (“containment”) degrees of freedom method be overridden with DDFM=SATTERTHWAITE in my model statement. Notice that in MIXED, there are no mean squares so that research on how to mimic Satterthwaite’s method in REML applications had to be done.