5 Multivariate Probability Distributions

5.1 Joint Probability Distributions

5.2 Expected Values of Functions of rvs

5.3 Covariance

5.4 Linear Functions of rvs

5.5 Conditional Expectation
5 Multivariate Probability Distributions

5.1 Joint Probability Distributions

Joint Distribution of Two Discrete rvs

Let \((X, Y)\) be 2 discrete rvs, then their joint probability function is given as:

\[
p(x, y) = P(X = x \text{ and } Y = y)
\]

and is defined over the range of \((X, Y)\).

If \(A\) is any subset of the range of \((X, Y)\) then

\[
P\{(X, Y) \in A\} = \sum_{(x, y) \in A} p(x, y)
\]
The joint probability function must satisfy:

- \(p(x, y) \geq 0 \) for all \((x, y)\) in the range of \((X, Y)\).
- \[
\sum_{\text{range of } (X,Y)} p(x, y) = 1
\]

Example 5.1.1 The following is the joint pmf for \((X, Y)\):

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>(y)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Calculate

1. \(P(X = 1, Y = 1) \)
2. $P(X = 1, Y \leq 1)$

3. $P(X = Y)$
Marginal Distributions

The marginal distribution of X based on the joint distribution of (X,Y) is denoted by:

$$P(X = x) = p_X(x) \text{ for range of } X$$

and can be obtained from the joint probability function:

$$p_X(x) = \sum_{\text{range of } y} p(x, y)$$

Similarly, the marginal distribution of Y can be obtained by:

$$p_Y(y) = \sum_{\text{range of } x} p(x, y)$$
Example 5.1.2 For the \((X, Y)\) in Example 5.1.1, calculate \(p_X(1)\) and \(p_Y(1)\).

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = 1)</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>(x = 2)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note: The sum of all probabilities in the table should equal 1.0, which is indicated by the last row.
Conditional Probability Function

Let $p(x, y)$ be the joint pmf for (X, Y) and $p_Y(y)$ be the marginal pmf for Y. Then the conditional pmf for X given $Y = y$ is

$$p_X(x|y) = \frac{p(x, y)}{p_Y(y)}$$

for values of y for which $p_Y(y) > 0$. That is,

$$P(X = x|Y = y) = p_X(x|y) = \frac{p(x, y)}{p_Y(y)}.$$

Similarly,

$$P(Y = y|X = x) = p_Y(y|x) = \frac{p(x, y)}{p_X(x)}.$$

Note: $p_X(x|y)$ is a pmf of X for the subpopulation with $Y = y$; $p_Y(y|x)$ is a pmf of Y for the subpopulation with $X = x$.
Example 5.1.3 For the \((X, Y)\) in Example 5.1.1, calculate \(p_Y(y|1)\) for \(y = 0, 1, 2\).

\[
\begin{array}{c|ccc}
\text{p}(x, y) & y \\
& 0 & 1 & 2 \\
\hline
x & & & \\
1 & 0.3 & 0.2 & 0.1 \\
2 & 0.1 & 0.2 & 0.1 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c}
\text{p}(y|1) & 1.0 \\
\hline
\end{array}
\]
Independence of Discrete Random Variables

If the joint pmf for (X, Y) is $p(x, y)$, then rv X and Y are said to be independent if, and only if,

$$p(x, y) = p_X(x)p_Y(y)$$

for ALL pairs (x, y) in the range of (X, Y).

Otherwise we say X and Y are dependent.

Example 5.1.4 Are (X, Y) in Example 5.1.1 independent?

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of bivariate discrete distribution.

<table>
<thead>
<tr>
<th>Joint pmf</th>
<th>$p(x, y) = P(X = x, Y = y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P{(X, Y) \in A} = \sum_{all (x,y) \in A} p(x, y)$</td>
<td>[= \sum_{all (x,y) \in A} p(x, y)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marginal pmf</th>
<th>$P_X(x) = P(X = x) = \sum_{all y} p(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_Y(y) = P(Y = y) = \sum_{all x} p(x, y)$</td>
<td>[= \sum_{all x} p(x, y)]</td>
</tr>
</tbody>
</table>

| Conditional pmf | $P_X(x|y) = P(X = x|Y = y) = \frac{p(x,y)}{P_Y(y)}$ |
|----------------------------|--|
| $P_Y(y|x) = P(Y = y|X = x) = \frac{p(x,y)}{P_X(x)}$ | \[= \frac{p(x,y)}{P_X(x)}\] |

| Independence | If $p(x, y) = p_X(x) \cdot p_Y(y)$ for all (x,y) in the range. |
Example 5.1.5 Suppose \((X, Y)\) has the following joint pmf. Are \((X, Y)\) independent?

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>(\quad y)</th>
<th>(\quad 0)</th>
<th>(\quad 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>1</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.42</td>
<td></td>
</tr>
</tbody>
</table>

\[1.0\]
Example 5.1.6 Let $Y_1 = 0$ if child survived; $Y_1 = 1$ if not. Let $Y_2 = 0$ if no belt used; 1 if adult belt used; 2 if car-seat belt used.

$p(y_1, y_2)$	y_1	
y_2	0	0.38 0.17
	1	0.14 0.02
	2	0.24 0.05
		1.0

1. Give the marginal distributions for Y_1 and Y_2.

2. Give the conditional distribution of Y_2 given $Y_1 = 0$.

3. What is the probability that a child survived given that he/she was in a car-seat belt.

4. Are Y_1 and Y_2 independent of each other?
Joint Distribution of Two Continuous rvs

Let X and Y be continuous random variables. Then their joint probability density function, $f(x, y)$, has the property that for events of the form:

$$A = \{a \leq X \leq b, c \leq Y \leq d\},$$

$$P\{(X, Y) \in A\} = P(a \leq X \leq b, c \leq Y \leq d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx.$$

Properties of joint pdf $f(x, y)$:

- $f(x, y) \geq 0$
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1.$
Joint Cumulative Distribution Function

For rvs \((X, Y)\) (can be either discrete or continuous), the joint cumulative distribution function (cdf), \(F(x, y)\), is defined as

\[
F(x, y) = P(X \leq x, Y \leq y)
\]

for \(-\infty < x < +\infty\) and \(-\infty < y < +\infty\).

Example 5.1.7 Suppose the joint pdf for rv \(X\) and \(Y\) is:

\[
f(x, y) = 0.25, \ 0 < x < 2, \ 0 < y < 2.
\]

Calculate \(P(X \leq 1, Y \leq 0.5)\)
Example 5.1.8 Suppose the joint pdf for rv X and Y is:

$$f(x, y) = x + y, 0 < x < 1, 0 < y < 1.$$

Calculate $P(1/4 \leq X \leq 3/4, 1/4 \leq Y \leq 3/4)$
Example 5.1.9 (5.12) Suppose the joint pdf for rv X and Y is:

$$f(x, y) = 2, \ 0 \leq x \leq 1, \ 0 \leq y \leq 1, \ 0 \leq x + y \leq 1.$$

Calculate $P(X \leq 3/4, Y \leq 3/4)$ and $P(X \leq 1/2, Y \leq 1/2)$.
Marginal Distributions of Continuous \(rvs \) Let \(X \) and \(Y \) be continuous random variables with joint density function \(f(x, y) \), then the marginal distribution of \(X \) is denoted by \(f_X(x) \) and can be be derived from the joint pdf as

\[
f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy.
\]

Similarly, the marginal distribution of \(Y \) is denoted by \(f_Y(y) \) and can be be derived from the joint pdf as

\[
f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx.
\]
Example 5.1.10 Suppose the joint pdf for rvs \((X, Y)\) is

\[f(x, y) = x + y, \quad 0 < x < 1, \quad 0 < y < 1. \]

Derive the marginal distribution of \(Y\)
Conditional Distribution for Continuous rv$s

Let $f(x, y)$ be the joint pdf for continuous rvs (X, Y). Then the conditional distribution of X given $Y = y$ is defined as:

$$f(x|Y = y) = \frac{f(x, y)}{f_Y(y)}$$

for y values such that $f_Y(y) > 0$. Here $f_Y(y)$ is the marginal pdf of Y.

Note: the $f(x|Y = y)$ is a pdf of X for the subpopulation with $Y = y$.
Example 5.1.11 Suppose the joint pdf for rvs \((X, Y)\) is

\[
f(x, y) = x + y, \quad 0 < x < 1, \quad 0 < y < 1.
\]

Drive \(f_X(x|Y = 1/4)\) and calculate \(P(X \leq 1/2|Y = 1/4)\).
Example 5.1.12 Suppose \(rvs \ (X, Y) \) has joint pdf:
\[f(x, y) = \frac{1}{2}, \quad 0 < x < y < 2. \]
Derive the conditional distribution of \(Y \) given \(X = x \).
Indepedence of Continuous rvs

Two continuous rvs, \((X, Y)\), are \textbf{independent} if, and only if,

\[f(x, y) = f_X(x)f_Y(y), \quad \text{for all } (x, y), \]

otherwise \(X\) and \(Y\) are said to be \textbf{dependent}.

\textbf{Example 5.1.13} Suppose the joint pdf for rvs \((X, Y)\) is:

\[f(x, y) = x + y, 0 < x < 1, 0 < y < 1. \]

Show that \(X\) and \(Y\) are not independent.
Example 5.1.14 Suppose the joint pdf for rvs \((X, Y)\) is:

\[
f(x, y) = \lambda^2 e^{-\lambda(x+y)}, \quad 0 < x < +\infty, \quad 0 < y < +\infty
\]

and \(0 < \lambda < +\infty\) is known. Are \(X\) and \(Y\) independent?
Summary of bivariate distribution.

<table>
<thead>
<tr>
<th></th>
<th>discrete</th>
<th>continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint pmf/pdf</td>
<td>$p(x, y) = P(X = x, Y = y)$</td>
<td>$f(x, y):$ density</td>
</tr>
<tr>
<td>$P{ (X, Y) \in A } = \sum_{(x,y) \in A} p(x,y)$</td>
<td>$P{ (X, Y) \in A } = \int \int_A f(x,y) , dx , dy$</td>
<td></td>
</tr>
<tr>
<td>Marginal pmf/pdf</td>
<td>$P_X(x) = P(X = x) = \sum_{all , y} p(x,y)$</td>
<td>$f_X(x) = \int f(x,y) , dy$</td>
</tr>
<tr>
<td>$P_Y(y) = P(Y = y) = \sum_{all , x} p(x,y)$</td>
<td>$f_Y(y) = \int f(x,y) , dx$</td>
<td></td>
</tr>
<tr>
<td>Conditional pmf/pdf</td>
<td>$P_X(x</td>
<td>y) = \frac{p(x,y)}{P_Y(y)}$</td>
</tr>
<tr>
<td>$P_Y(y</td>
<td>x) = \frac{p(x,y)}{P_X(x)}$</td>
<td>$f_Y(y</td>
</tr>
<tr>
<td>Independence</td>
<td>If $p(x, y) = p_X(x) \cdot p_Y(y)$</td>
<td>If $f(x, y) = f_X(x)f_Y(y)$</td>
</tr>
<tr>
<td>for all (x, y) in the range</td>
<td>for all (x, y)</td>
<td></td>
</tr>
</tbody>
</table>
Example 5.1.15 Suppose \((X, Y)\) has the joint pdf
\[f(x, y) = 30xy^2, \ x - 1 \leq y \leq 1 - x, \ 0 \leq x \leq 1. \]

1. Calculate \(F(1/2, 1/2)\). Answer: \(9/16\)
2. Calculate \(F(1/2, 2)\). Answer: \(13/16\)
3. Calculate \(P(X > Y)\). Answer: \(21/32\)
Example 5.1.16 Suppose \((X, Y)\) has the joint pdf
\[f(x, y) = 6(1 - y), \quad 0 \leq x \leq y \leq 1. \] Are \(X\) and \(Y\) independent?
5.2 Expected Values of Functions of rvs

Expectations of Functions of Discrete rvs

Let Y_1, Y_2, \cdots, Y_k be k discrete rvs with joint pmf $p(y_1, y_2, \cdots, y_k)$, and let $U = g(Y_1, Y_2, \cdots, Y_k)$ be a function of Y_1, Y_2, \cdots, Y_k. Then the expectation of U is defined as:

$$E(U) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_k} g(y_1, y_2, \cdots, g_k)p(y_1, y_2, \cdots, y_k).$$

Expectations of Functions of Continuous rvs

Let Y_1, Y_2, \cdots, Y_k be k continuous rvs with joint pdf $f(y_1, y_2, \cdots, y_k)$, and let $U = g(Y_1, Y_2, \cdots, Y_k)$ be a function of Y_1, Y_2, \cdots, Y_k. Then the expectation of U is defined as:

$$E(U) = \int_{y_1} \int_{y_2} \cdots \int_{y_k} g(y_1, y_2, \cdots, g_k)f(y_1, y_2, \cdots, y_k)dy_k \cdots dy_2 dy_1.$$
Example 5.2.1 The following is the joint pmf of (X, Y):

<table>
<thead>
<tr>
<th>$p(x, y)$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculate $E(XY)$ and $E\{\max(X, Y)\}$.
Example 5.2.2 Suppose rvs (X, Y) has joint pdf:

$$f(x, y) = \frac{1}{2}, \quad 0 \leq x < y \leq 2.$$

Calculate (1) $E(XY)$; (2) $E(Y)$.

Expected Values of Special Functions

Let c, c_1, \cdots, c_k be constants, Y_1 and Y_2 be rvs, and $g_1(Y_1, Y_2), g_2(Y_1, Y_2), \cdots, g_k(Y_1, Y_2)$ be k functions of Y_1 and Y_2. Then by definition we can show:

- $E(c) = c$
- $E \{cg_1(Y_1, Y_2)\} = cE \{g_1(Y_1, Y_2)\}$.
- $E \{c_1 g_1(Y_1, Y_2) + \cdots + c_k g_k(Y_1, Y_2)\} = c_1 E \{g_1(Y_1, Y_2)\} + \cdots + c_k E \{g_k(Y_1, Y_2)\}$.

See Chapters 3 and 4 for the analogous results for univariate cases.
Expectation of Products of Functions of Independent rv's

Theorem 1 Let X and Y be independent rv's. Let $g(X)$ and $h(Y)$ be functions of X and Y, respectively. Then

$$E \{g(X)h(Y)\} = E\{g(X)\}E\{h(Y)\}.$$

Proof:
5.3 Covariance

If X and Y are rvs, the covariance of X and Y is defined as:

$$\text{Cov}(X, Y) = E \left[(X - E(X))(Y - E(Y)) \right]$$

Theorem 2 The computing formula for covariance is

$$\text{Cov}(X, Y) = E(XY) - E(X)E(Y) = E(XY) - \mu_X \mu_Y$$

Proof:
Example 5.3.1 Suppose the joint pdf for rvs \((X, Y)\) is:

\[f(x, y) = x + y, 0 < x < 1, 0 < y < 1. \]

Calculate \(Cov(X, Y)\)
Properties of Covariance:

- $Cov(Y, Y) = Var(Y, Y)$
- $Cov(X, Y) = Cov(Y, X)$
- Covariance measures the linear dependence between two random variables.
- $Cov(X, Y) = 0 \Rightarrow X$ and Y are **uncorrelated**
- Independence \Rightarrow Uncorrelated (prove this)
- Uncorrelated $\not\Rightarrow$ Independence
Example 5.3.2 The following is the joint pmf of \((X, Y)\):

<table>
<thead>
<tr>
<th>(p(x, y))</th>
<th>(-1)</th>
<th>0</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1/4</td>
<td>1/2</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Verify that \(X\) and \(Y\) are uncorrelated but not independent.
Correlation

The correlation between rvs, X and Y, is defined as

\[\rho_{X,Y} = \text{Corr}(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}, \]

where \(\sigma_X \) and \(\sigma_Y \) are the standard deviations of \(X \) and \(Y \), respectively.

Properties of Correlation:

- \(-1 \leq \text{Corr}(X, Y) \leq 1 \)
- Values of \(\text{Corr}(X, Y) \) near 0 indicate weak linear association between \(X \) and \(Y \)
- \(X \) and \(Y \) are independent \(\Rightarrow \text{Corr}(X, Y) = 0 \)
- Values of \(\text{Corr}(X, Y) \) near +1 (-1) indicate strong positive (negative) linear association between \(X \) and \(Y \)
- If high values of \(X \) associate with high values of \(Y \), while low
values of X associate with low values of Y, then $\text{Corr}(X, Y) > 0$

- If high values of X associate with low values of Y, while low values of X associate with high values of Y, then $\text{Corr}(X, Y) < 0$

- Scale-free measure of association

Example 5.3.3 Suppose the joint pdf for rvs (X, Y) is

$$f(x, y) = x + y, 0 < x < 1, 0 < y < 1.$$

Calculate $\text{Corr}(X, Y)$.

5.4 Linear Functions of \textit{rvs}

Let Y_1, Y_2, \cdots, Y_n be n random variables, and a_1, a_2, \cdots, a_n be n constants. Then the function

$$U = a_1 Y_1 + a_2 Y_2 + \cdots + a_n Y_n = \sum_{i=1}^{n} a_i Y_i$$

is called a linear function (or a linear combination) of Y_1, Y_2, \cdots, Y_n. Since Y_1, Y_2, \cdots, Y_n are random variables, U is also a random variable.
Theorem 3 (Linear Functions of \(r\)vs) Let \(Y_1, Y_2, \ldots, Y_n\) be random variables, and \(a_1, a_2, \ldots, a_n\) be constants. Let
\[U = \sum_{i=1}^{n} a_i Y_i. \]
Then
\[
E(U) = \sum_{i=1}^{n} a_i E(Y_i)
\]
\[
V(U) = \sum_{i=1}^{n} a_i^2 V(Y_i) + 2 \sum_{i<j} a_i a_j Cov(Y_i, Y_j)
\]

Theorem 4 (Linear Functions of Uncorrelated \(r\)vs) Let
\(Y_1, Y_2, \ldots, Y_n\) be uncorrelated random variables, and \(a_1, a_2, \ldots, a_n\) be constants. Let
\[U = \sum_{i=1}^{n} a_i Y_i. \]
Then
\[
E(U) = \sum_{i=1}^{n} a_i E(Y_i)
\]
\[
V(U) = \sum_{i=1}^{n} a_i^2 V(Y_i)
\]
Example 5.4.1 Suppose the joint pdf for rvs \((X, Y)\) is

\[f(x, y) = x + y, \quad 0 < x < 1, \quad 0 < y < 1. \]

Given:

\[E(X) = E(Y) = \frac{7}{12}, \quad Cov(X, Y) = -\frac{1}{144} \]

\[E(X^2) = E(Y^2) = \frac{5}{12}. \]

Let \(U = (X + Y)/2\). *Calculate* \(E(U)\) *and* \(V(U)\).
5.5 Conditional Expectation

Definition. Let X and Y be continuous random variables with conditional pdf of X given $Y = y$ as:

$$f(x|Y = y)$$

Then the conditional expectation of X given $Y = y$ is:

$$E(X|Y = y) = \int_{-\infty}^{+\infty} x f(x|Y = y) dx$$

If X and Y are discrete rvs with conditional pmf: $p_x(x|Y = y)$. Then the conditional expectation of X given $Y = y$ is:

$$E(X|Y = y) = \sum_{\text{range of } x} x p_x(x|y) dx$$
Example 5.5.1 Suppose the joint pdf for rvs \((X, Y)\) is

\[f(x, y) = x + y, \quad 0 < x < 1, \quad 0 < y < 1. \]

Calculate \(E(X|Y = 1/4)\).
Theorem 5 Law of Iterated Expectations

\[E(X) = E\{E(X|Y)\} \]

Similarly for the variance:

\[V(X) = E\{V(X|Y)\} + V\{E(X|Y)\} \]
Example 5.5.2 A quality control plan for an assembly line involves sampling \(n = 10 \) finished items per day and counting \(Y \), the number of defectives. Let \(p \) denote the probability of observing defective, then \(Y \sim \text{Binomial}(n, p) \). But \(p \) varies from day to day and is assumed to follow \(U(0, 1/4) \) distribution. Find \(E(Y) \) and \(V(Y) \). What if \(p \sim \text{Beta}(\alpha = 1, \beta = 7) \)?