Semi-parametric Transformation Models for Case-cohort Study

Wenbin Lu
lu@stat.ncsu.edu
http://www4.stat.ncsu.edu/~lu
Outline

• Semi-parametric models and estimations
Outline

• Semi-parametric models and estimations
• Case-cohort study
Outline

• Semi-parametric models and estimations
• Case-cohort study
• Weighted estimating equations (WEE) approaches for case-cohort study
Outline

• Semi-parametric models and estimations
• Case-cohort study
• Weighted estimating equations (WEE) approaches for case-cohort study
• Numerical studies
Outline

• Semi-parametric models and estimations
• Case-cohort study
• Weighted estimating equations (WEE) approaches for case-cohort study
• Numerical studies
• Remarks and future work
Semi-parametric survival models

• Cox proportional hazards model

\[\lambda(t|Z) = \lambda_0(t) \exp(\beta' Z) \]
Semi-parametric survival models

- Cox proportional hazards model

 \[
 \lambda(t|Z) = \lambda_0(t) \exp(\beta' Z)
 \]

- Proportional odds model

 \[
 \frac{1 - S(t|Z)}{S(t|Z)} = \frac{1 - S_0(t)}{S_0(t)} \exp(\beta' Z)
 \]
Semi-parametric survival models

- Cox proportional hazards model
 \[\lambda(t|Z) = \lambda_0(t) \exp(\beta' Z) \]

- Proportional odds model
 \[\frac{1 - S(t|Z)}{S(t|Z)} = \frac{1 - S_0(t)}{S_0(t)} \exp(\beta' Z) \]

- Linear transformation models
 \[H(T) = -\beta' Z + \epsilon \]

\(H \) - an unknown monotone increasing function
\(\epsilon \) - error term
Estimations for linear transformation models

- Cheng, Wei and Ying (1995) and Fine, Ying and Wei (1998)’s approach:
Estimations for linear transformation models

- Cheng, Wei and Ying (1995) and Fine, Ying and Wei (1998)’s approach:
 - Main assumption: censoring time C is independent of covariates and T
Estimations for linear transformation models

- Cheng, Wei and Ying (1995) and Fine, Ying and Wei (1998)’s approach:
 - Main assumption: censoring time C is independent of covariates and T
 - Unbiased estimating equation

$$\sum_{i \neq j, i,j=1}^{N} w_{ij}(\theta)\eta_{ij}(\theta) \left[\frac{\delta_j I\{\min(\tilde{T}_i, t_0) \geq \tilde{T}_j\}}{\hat{G}_n^2(\tilde{T}_j)} - \eta_{ij}(\theta) \right] = 0,$$

where $\tilde{T}_i = \min(T_i, C_i)$, $\delta_i = I(T_i \leq C_i)$, and $\theta = (\zeta, \beta')'$ with $\zeta = H(t_0)$, where t_0 is a constant such that $P(\tilde{T} > t_0) > 0$. \hat{G}_n is the Kaplan-Meier estimator for the censoring distribution. $\eta_{ij}(\theta)$ is a known function of θ.
• Chen, Jin and Ying (2002)’s approach:
• Chen, Jin and Ying (2002)’s approach:
 - More general assumption: C is independent of T given covariates
• Chen, Jin and Ying (2002)’s approach:
 - More general assumption: C is independent of T given covariates
 - Martingale based estimating equations

$$
\sum_{i=1}^{N} \left[dN_i(t) - Y_i(t) d\Lambda \{ H(t) + \beta' Z_i \} \right] = 0, \quad t \geq 0,
$$

and

$$
\sum_{i=1}^{N} \int_{0}^{\infty} Z_i [dN_i(t) - Y_i(t) d\Lambda \{ H(t) + \beta' Z_i \}] = 0.
$$

where $N_i(t)$ and $Y_i(t)$ are the usual counting and at-risk processes.
Case-cohort study

• Introduced by Prentice (1986) for large epidemiological and other event history studies.
Case-cohort study

- Introduced by Prentice (1986) for large epidemiological and other event history studies.
- Subcohort
Case-cohort study

- Introduced by Prentice (1986) for large epidemiological and other event history studies.
- Subcohort
- Partial covariate information
Case-cohort study

• Introduced by Prentice (1986) for large epidemiological and other event history studies.

• Subcohort

• Partial covariate information

• Advantage: saving the cost in many large medical studies
Case-cohort study

- Introduced by Prentice (1986) for large epidemiological and other event history studies.
- Subcohort
- Partial covariate information
- Advantage: saving the cost in many large medical studies
- pseudo-likelihood approach for the PH model
WEE approaches

• Kong, Cai & Sen’s approach (2004):
WEE approaches

- Kong, Cai & Sen’s approach (2004):
 - Main assumption: censoring time C is independent of covariates and T
WEE approaches

- Kong, Cai & Sen’s approach (2004):
 - Main assumption: censoring time \(C \) is independent of covariates and \(T \)
 - Unbiased estimating equation

\[
\sum_{i \neq j, i,j=1}^{N} \rho_{ij} w_{ij}(\theta) \hat{\eta}_{ij}(\theta) \left[\frac{\delta_j I\{\min(\tilde{T}_i, t_0) \geq \tilde{T}_j\}}{\hat{G}_n^2(\tilde{T}_j)} - \eta_{ij}(\theta) \right] = 0,
\]

where \(\rho_{ij} = \rho_i \rho_j \) with \(\rho_i = \delta_i + (1 - \delta_i) \xi_i / p \). And \(\xi_i = 1/0 \) denoting the subcohort indicator. \(p \) is the probability that a subject is selected into subcohort.
WEE approaches (ctd)

- Our approach:
WEE approaches (ctd)

• Our approach:
 - More general assumption: C is independent of T given covariates
WEE approaches (ctd)

- Our approach:
 - More general assumption: C is independent of T given covariates
 - Martingale based estimating equations

\[
\sum_{i=1}^{N} \rho_i [dN_i(t) - Y_i(t)d\Lambda\{H(t) + \beta'Z_i\}] = 0, \quad t \geq 0,
\]

and

\[
\sum_{i=1}^{N} \int_{0}^{\infty} Z_i \rho_i [dN_i(t) - Y_i(t)d\Lambda\{H(t) + \beta'Z_i\}] = 0.
\]
• Asymptotic properties of our estimates

Proposition. Under suitable regularity conditions, we have that

\[N^{\frac{1}{2}} (\hat{\beta} - \beta_0) \rightarrow N\{0, A^{-1}\Sigma(A^{-1})'\} \]

in distribution, as \(N \rightarrow \infty \). Moreover, \(A \) and \(\Sigma \) can be consistently estimated by

\[
\hat{A} = \frac{1}{N} \sum_{i=1}^{N} \int_0^\tau \rho_i \{Z_i - \bar{Z}(t)\} Z_i \hat{\lambda}\{\hat{H}(t) + \hat{\beta}' Z_i\} Y_i(t) d\hat{H}(t),
\]

\[
\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} \left[\int_0^\tau \rho_i \{Z_i - \bar{Z}(t)\} d\hat{M}_i(t) \int_0^\tau \rho_i \{Z_i - \bar{Z}(s)\}' d\hat{M}_i(s) \right].
\]
Numerical study

- hazard function of error term ϵ

$$\lambda(t) = \exp(t)/\{1 + \gamma \exp(t)\}$$

where $\gamma = 0, 1, 2$ (Dabrowska & Doksum, 1988).
Numerical study

- hazard function of error term ϵ

 $$\lambda(t) = \exp(t)/\{1 + \gamma \exp(t)\}$$

 where $\gamma = 0, 1, 2$ (Dabrowska & Doksum, 1988).

- $H(t)$ is chosen as $\log(t)$ for $\gamma = 0$, $\log(e^t - 1)$ for $\gamma = 1$, and $\log(0.5e^{2t} - 0.5)$ for $\gamma = 2$.
Numerical study

- hazard function of error term ϵ

$$\lambda(t) = \exp(t)/\{1 + \gamma \exp(t)\}$$

where $\gamma = 0, 1, 2$ (Dabrowska & Doksum, 1988).

- $H(t)$ is chosen as $\log(t)$ for $\gamma = 0$, $\log(e^t - 1)$ for $\gamma = 1$, and $\log(0.5e^{2t} - 0.5)$ for $\gamma = 2$.

- Covariate $Z = (Z_1, Z_2)'$, where Z_1 follows $U[0, 1]$ and Z_2 follows Ber(0.5).
Numerical study

- hazard function of error term ϵ

$$\lambda(t) = \exp(t)/\{1 + \gamma \exp(t)\}$$

where $\gamma = 0, 1, 2$ (Dabrowska & Doksum, 1988).

- $H(t)$ is chosen as $\log(t)$ for $\gamma = 0$, $\log(e^t - 1)$ for $\gamma = 1$, and $\log(0.5e^{2t} - 0.5)$ for $\gamma = 2$.

- Covariate $Z = (Z_1, Z_2)'$, where Z_1 follows $U[0, 1]$ and Z_2 follows Ber(0.5).

- C follows $U[0, c]$.
Numerical study

- hazard function of error term ϵ

\[
\lambda(t) = \exp(t)/\{1 + \gamma \exp(t)\}
\]

where $\gamma = 0, 1, 2$ (Dabrowska & Doksum, 1988).

- $H(t)$ is chosen as $\log(t)$ for $\gamma = 0$, $\log(e^t - 1)$ for $\gamma = 1$, and $\log(0.5e^{2t} - 0.5)$ for $\gamma = 2$.

- Covariate $Z = (Z_1, Z_2)'$, where Z_1 follows $U[0, 1]$ and Z_2 follows $\text{Ber}(0.5)$.

- C follows $U[0, c]$.

- Full Cohort $N = 1000$.

Joint work with Dr. A. TSIATIS – p. 10/14
Numerical study

- hazard function of error term ϵ

$$\lambda(t) = \exp(t)/\{1 + \gamma \exp(t)\}$$

where $\gamma = 0, 1, 2$ (Dabrowska & Doksum, 1988).

- $H(t)$ is chosen as $\log(t)$ for $\gamma = 0$, $\log(e^t - 1)$ for $\gamma = 1$, and $\log(0.5e^{2t} - 0.5)$ for $\gamma = 2$.

- Covariate $Z = (Z_1, Z_2)'$, where Z_1 follows $U[0, 1]$ and Z_2 follows Ber(0.5).

- C follows $U[0, c]$.

- Full Cohort $N = 1000$.

- Two case-cohort designs considered.
• Covariate independent censoring ($C \sim U[0, c]$)

\[\beta_1 = 1 \quad \beta_2 = -1 \]

<table>
<thead>
<tr>
<th>Study Design</th>
<th>CCI</th>
<th>CCII</th>
<th>FULL</th>
<th>CCI</th>
<th>CCII</th>
<th>FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) $\gamma = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean($\hat{\beta}$)</td>
<td>1.017</td>
<td>1.014</td>
<td>0.985</td>
<td>-1.046</td>
<td>-1.042</td>
<td>-1.014</td>
</tr>
<tr>
<td>SD($\hat{\beta}$)</td>
<td>0.538</td>
<td>0.447</td>
<td>0.362</td>
<td>0.338</td>
<td>0.286</td>
<td>0.236</td>
</tr>
<tr>
<td>Mean SE</td>
<td>0.591</td>
<td>0.483</td>
<td>0.382</td>
<td>0.336</td>
<td>0.282</td>
<td>0.235</td>
</tr>
<tr>
<td>CP</td>
<td>97.6</td>
<td>96.2</td>
<td>97.0</td>
<td>94.4</td>
<td>94.0</td>
<td>95.2</td>
</tr>
<tr>
<td>RE</td>
<td>0.45</td>
<td>0.66</td>
<td>1</td>
<td>0.49</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>RE*</td>
<td>0.34</td>
<td>0.47</td>
<td>0.65</td>
<td>0.47</td>
<td>0.60</td>
<td>0.73</td>
</tr>
<tr>
<td>(b) $\gamma = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean($\hat{\beta}$)</td>
<td>1.093</td>
<td>1.032</td>
<td>0.993</td>
<td>-1.047</td>
<td>-1.042</td>
<td>-1.011</td>
</tr>
<tr>
<td>SD($\hat{\beta}$)</td>
<td>0.620</td>
<td>0.512</td>
<td>0.391</td>
<td>0.362</td>
<td>0.309</td>
<td>0.246</td>
</tr>
<tr>
<td>Mean SE</td>
<td>0.642</td>
<td>0.522</td>
<td>0.416</td>
<td>0.359</td>
<td>0.300</td>
<td>0.247</td>
</tr>
<tr>
<td>CP</td>
<td>95.6</td>
<td>96.2</td>
<td>96.2</td>
<td>96.2</td>
<td>94.6</td>
<td>95.2</td>
</tr>
<tr>
<td>RE</td>
<td>0.40</td>
<td>0.58</td>
<td>1</td>
<td>0.46</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>RE*</td>
<td>0.35</td>
<td>0.48</td>
<td>0.65</td>
<td>0.46</td>
<td>0.59</td>
<td>0.73</td>
</tr>
</tbody>
</table>
\begin{itemize}
 \item Covariate independent censoring (ctd)
 \begin{align*}
 \beta_1 &= 1 \\
 \beta_2 &= -1 \\
 \end{align*}
 \quad \gamma = 0
\end{itemize}

\begin{tabular}{lcccc}
 Mean($\hat{\beta}$) & 1.014 & 0.999 & 0.975 & -1.030 & -1.028 & -1.023 \\
 SD($\hat{\beta}$) & 0.534 & 0.417 & 0.337 & 0.340 & 0.287 & 0.230 \\
 Mean SE & 0.544 & 0.446 & 0.355 & 0.317 & 0.268 & 0.225 \\
 CP & 93.8 & 96.2 & 94.6 & 93.4 & 93.8 & 95.0 \\
 RE & 0.40 & 0.65 & 1 & 0.46 & 0.64 & 1 \\
 RE* & 0.33 & 0.47 & 0.65 & 0.49 & 0.62 & 0.76 \\
\end{tabular}

CCI - the first case-cohort design;
CCI - the second case-cohort design;
SD - sample standard deviation;
Mean SE - mean of estimated standard error;
CP - empirical coverage probability of 95\% confidence interval;
RE - empirical relative efficiencies of our estimators.
RE* - empirical relative efficiencies of Kong et al. (2004)’s estimators.
• Covariate dependent censoring (C follows Cox model)

<table>
<thead>
<tr>
<th>Model</th>
<th>β_c</th>
<th>Mean($\hat{\beta}$)</th>
<th>SD($\hat{\beta}$)</th>
<th>SE</th>
<th>CP</th>
<th>Mean($\hat{\beta}$)</th>
<th>SD($\hat{\beta}$)</th>
<th>SE</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma = 1$</td>
<td>0</td>
<td>1.055</td>
<td>0.658</td>
<td>0.639</td>
<td>94.0</td>
<td>-1.055</td>
<td>0.398</td>
<td>0.366</td>
<td>93.2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.034</td>
<td>0.628</td>
<td>0.633</td>
<td>95.8</td>
<td>-1.051</td>
<td>0.368</td>
<td>0.364</td>
<td>95.8</td>
</tr>
<tr>
<td></td>
<td>log 2</td>
<td>1.054</td>
<td>0.642</td>
<td>0.635</td>
<td>94.4</td>
<td>-1.032</td>
<td>0.395</td>
<td>0.363</td>
<td>92.0</td>
</tr>
<tr>
<td>$\gamma = 2$</td>
<td>0</td>
<td>1.022</td>
<td>0.670</td>
<td>0.695</td>
<td>95.2</td>
<td>-1.020</td>
<td>0.420</td>
<td>0.397</td>
<td>95.2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.061</td>
<td>0.645</td>
<td>0.698</td>
<td>97.8</td>
<td>-1.062</td>
<td>0.399</td>
<td>0.396</td>
<td>93.8</td>
</tr>
<tr>
<td></td>
<td>log 2</td>
<td>1.028</td>
<td>0.707</td>
<td>0.693</td>
<td>95.0</td>
<td>-1.036</td>
<td>0.389</td>
<td>0.393</td>
<td>96.6</td>
</tr>
<tr>
<td>$\gamma = 0$</td>
<td>0</td>
<td>1.062</td>
<td>0.595</td>
<td>0.567</td>
<td>94.0</td>
<td>-1.060</td>
<td>0.357</td>
<td>0.335</td>
<td>93.4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.033</td>
<td>0.601</td>
<td>0.567</td>
<td>92.6</td>
<td>-1.054</td>
<td>0.357</td>
<td>0.335</td>
<td>93.0</td>
</tr>
<tr>
<td></td>
<td>log 2</td>
<td>1.075</td>
<td>0.603</td>
<td>0.571</td>
<td>93.6</td>
<td>-1.067</td>
<td>0.343</td>
<td>0.333</td>
<td>94.6</td>
</tr>
</tbody>
</table>

SD - sample standard deviation;
SE - mean of estimated standard error;
CP - empirical coverage probability of 95% confidence interval.
Remarks and future work

• Consider more general censoring assumption
Remarks and future work

- Consider more general censoring assumption
- Easy to implement and allow a rigorous development of asymptotic normality with an explicit formula for the variance-covariance matrix
Remarks and future work

- Consider more general censoring assumption

- Easy to implement and allow a rigorous development of asymptotic normality with an explicit formula for the variance-covariance matrix

- Subcohort sampling may depend on some available covariates for the full cohort
Remarks and future work

• Consider more general censoring assumption

• Easy to implement and allow a rigorous development of asymptotic normality with an explicit formula for the variance-covariance matrix

• Subcohort sampling may depend on some available covariates for the full cohort

• More efficient estimation by adding some weight functions
Remarks and future work

• Consider more general censoring assumption

• Easy to implement and allow a rigorous development of asymptotic normality with an explicit formula for the variance-covariance matrix

• Subcohort sampling may depend on some available covariates for the full cohort

• More efficient estimation by adding some weight functions

• Double robust ideas might also be used to improve efficiency