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SUMMARY

For two multivariate nonsingular nofmal distribu-
tions, the familiar null hypothesls of equal dispersion
matrices 18 consldered agalnst various alternatives stated
in terms of certaln characterlstic roots and a physical in-
terpretation 1s glven for the alternatlves considered. An
inference procedure which depends on simlilar reglons and 1s
based on one independent random sample from each of the two
distrlbutions, 1s proposed for the null hypothesls agalnst
each of the alternatlve hypotheses, Also, fof each case,
conservative confidence bounds are obtained on one or more
parameﬁric functions which mlght be interpreted as measures
of departure from the null hypothesls in the direction of the
corresponding alternative,

1. INTRODUCTION

For two nonsingular p-varlate normal distributions,

N[p,,Z;] and N[p,,2,], we start from the familiar null

hypothesis Ho’§1 = §2‘ The characterlstilic roots, all posltive,



1 no matter whether Ho 18 true or not will be denoted

of 3,55

bx 71’72""’7p' Most often the largest and smallest roots

will be denoted respectively by M and Ym* Ho can now be

-stated in the form H,:all y's = 1. As alternatives, how-

éyer, the following are considered: (1) Hy:all y's > 1;

(ii) Hy:all y's < 1; (L11) H3:a11 y'8 > 1 or all y's < 1;

(iv) Hy:at least one y > 1; (v) Hytat least one y < 1;

(vi) Hgiat least one y > 1 and at least one y < 1; (vii) H,:at

least one ¥y > 1 or < 1, It may be noted that (1i1) 1is the

union of (1) and (11), (vi) is the intersection of (iv) and

~(v), (vii) 1s the union of (iv) and (v), and (vi), together

with Hg, is the complement of (1i1i). Also, while each of

tﬁe alternatives forms a mutually exclusive palr with HO, yet

only (vii) 1s the complement of H , and it is only (vil) that

"has attracted attention heretofore [2,5,10]. The relatlons

in logical structure between the varlous alternatives may be

useful in understanding the forme of the inference procedufes

proposed in Sec¢tlon 2 of this paper for H, agalnst each of

the alternatives., Sectlion 3 discusses some conservative con-

fidence bouhds of varylng degrees of approprlateness assoclated

with the tests. Sectlion U4 conslsts of some concluding remarks.
We cdnsider one possible physical meaning of the

alternatives consldered in this paper. If ﬁl(pxl) is

p-variate nonsingular N[g;,%] and x,(pxl) 1s p-variate
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nonsingular N[EQ’EQ] and the elements (variates) of x, are

~1
physically of the same nature as those of X5 (L.e., for e.g.,
the flrst element in both 1is amount of steel produced, the
second element 1s total farm produce, etc.), then, if

a’(lxp) = (al,ae,...,ap) 1s a vector of nonstochastic utili-
tarian "weilghts" that go with the p-varlates, the linear
functions 2151’ and Q'EQ are of utllitarian interest. It is
well known that a’x,
univariate N(a’p,,a’Z,a). If a’ is known then a direct com-

1s univariate N(a 'El’a'zl ) and 5'52 is

parison of a’x, and a’x,, for observed values of x, and x,,
using the usual unlvarlate technlques would be qulte appropriate.
Thus, for Instance, one may be Interested in differences be-
tyeen the means a’p, and a’p,, or in the ratlo of the varlances,
g’glg/g'gzg. For a known system of utilitarlian welghts then,
one may, for instance, wish to test H :al’y a/é'zgg =1,

_-—-—-—-_—

agalnst H :a’z,a /4’38 > 1. The test 1s the well known, one-

sided F-test., But now, 1f a’ is not known or glven, then one
may want to obtaln a weight-free‘solution by protecting one-
self agalnst the worst possible sét of weights (in a sort of
minimax sense) and pose the question as a test of

Hj:a'Z,8 /8738 = 1 for all a, agalnst Hy:a’zja/a’sa > 1 for
all a. This 1is exactly the null hypothesis of H :all y's =1,
against H :all y's > 1. Of the other alternatives, H, and Hy
can bé interpreted in exactly the same manner. According to
this 1nterpretation HM’ H5, H6 and H7 are much weaker alterna-

tives. H,, for example, means a'zlg/g a > 1 for at least



TR

6he a, or 1n other words, that we are consildering (in terms
of acceptance of HM) the most favorable kind of weights (and
trying to reach in a sense a minimin solution)., However, in
terms of acceptance of Ho’ we stay with‘the same worst set of
weights, Similarly for Hy to H,. The main point‘in introduc-
ing H4, H5, H6 and H7 1s to indicate how the customary H7 shows
up accbrding to our interpretation. Of Flsher's approach to
‘discriminant analysls and Hotelllng!s approach to canonical
correlations (in terms of taking a linear compound of the
variates and then maximlizing certain quantities wlith respect
to these compounding coefficients) we have always preferred
this interpretation to the one that 1s more customary. But
this 18 a matter of opinion and we shall not press 1t here,
- 2., INFERENCE PROCEDURES FOR H0 AGAINST EACH OF THE
ALTERNATIVES OF SECTION 1
Let §; and §, be two (pxp) matrices hased on
independent random samples of sizes (n1+1) and (n2+l) from
the two populatlons. Let these denote the maxlimum likélihobd
estimators of 3, and I, with the conventlonal bias correction,
We assume that p < the smaller of ny and Ny, SO that §l and.§2
are positive definite almost everywhere. Let cM and n denote,
respectively, the 1arge§t and the smallest characterlistic
roots of §1§;l. Also let ch(A) denote the characteristic
root of any general (square) matrix A and chm(g) and chM(é)

the smallest and largest roots. Then, uslng a heuristic



argument similar to that of [5], the following inference pro-
cedures, some of them three-declsion procedures, are proposed,
~whereln W(H) denotes the acceptance reglon for the hypothesis H,
‘and W(I), where 1t occurs, denotes the region of indecision

or no cholce between the two hypotheses 1n question: |

(1) W(Ho)xoM < A W(Hl):cm > N3 W(I):cm <A <oy
(11) W(Hy) se > Nos W(Hy) ey < Ay W(I):c, < Ay < oy s

!
(111) W(H ) Ay < op < oy < Ags W(Hy):e, > Aé or oy < g ;

(2.1).-. W(I):cm < x3 < ey and/or e, < xé < ey s
(1v) W(Ho):cM < N3 W(H4).CM >Ny o
(v) W(H)):c > Mg W(HB):cm < A,
(vi) W(HO):A6 <ep Soy < Aé; W(Hg):c < Ag and ey > Ag s
W(I):cm < N and ¢y < ké or ¢ > Ag and ¢y > Aé s
(vi1) W(HO)M7 <ep<eys A%; W(H7):cé < N gnd/br ey > A% .

-

For Case (1), glven A, the probabilities assigned to

the three regions, W(H ), W(H;) and W(I), under H, can be

1)
determined. .Likewise, glven the probablllity assigned to the
rég;on W(HO) under H_, Alvcan be determined by the methods
described in [3,4],.and hence the probabilities assigned to
W(Hl) and W(I) under H, may be determined. It should be noted
that the method of e#aluating thelpfobability asslgned to the

region W(I) under Hy» for a given A has not been explicitly
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considered, The authors, however, feel that this will not
present any essentlally new difficulty and that the methods of
[3,4] will be applicable to this problem also.

Similar remarks hold concerning the determination
of the other A's, in Cases (11) -(vi1), under (2.1). For
Cases (111), (vi) and (vii), where we have two constants to
determine since the 1nference proéedures are two slded in
gach of these cases, 1n addition to the conditions of a given
probabllity for w(HO) under H_, We may 1mpoée the condition
of local unbiasedness of each of these tests. These two con-
ditlons taken together wilill enable us to determine both con-
stants involved unilquely. As discussed in [3,5,9], for
Case (vil), the condition of local unblasedness implies
certaln optimum power properties of the test for thls case.
For the other two cases, however, such impllications of the
condlition of local unbiasednegs are yet to be established.
Further, regarding all the Ats in (2.1), it should be noted
that; in addition to dependihg on the conditions discussed
above, they are also functions of p, hl and n,.

Case (vil), as noted in Section 1, with the test
given under Case (vil) of (2.1), ié the one that has been
considered in great detall elsewhere [5,6,7,8] and is in-
cluded here merely for completehess.

Finally, 1t can be seen that all the probabllities

(under Ho) assoclated with the procedures proposed under (2.1)

are independent of nulsance parameters.
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3. ASSOCIATED CONFIDENCE BOUNDS

Given a pair (HO,H) of composite hybothesis and
alternative, disjolint but not necessarily exhaustive, we
seek a parametrlc function that might be regarded as a
measure of departure from HO in the directlon of H, or,
alterpatively, some kind of a distance functlon between the
-get H0 and the set H. We next seek a confldence interwval
fof this parametric function, one sided (one way or the
.other) or two sided, depending ﬁpon the naturé of the ‘
pair (HO,H). No clalm 1s made at thls stage that the parametric
function chosen or the confldence intefval proposed for 1t is
in some sense optimal, As to‘the confidence coefficiént, it
would be vefy desirable 1f given any permlssible 1l-a, the
interval could be deflned such that this coefflclent were
equal to l1-a. If 1t does not turn out that way, the next
best thing would be to have a confldence coefflclent > l-a,
glven any permissible q, such that the equality is'attained,
or, in other words, that the probability of the interval
covering thg parametric function, for some value of this
function, 1s equal to- l-a. If this does not happen, the
next best thing would be, for any permissible 1l-a, to have a
confidence coefficient whose greatest lower bound > l-a (and
might, in fact, be greater than l-a), provided that the
interval 1tself is not trivial, for example, (0O,w) or (-w,w),
etc., but 1s, 1in fact, much better than these. We shall say

that such a confidence coefflclent 1s a conservatlive one, or
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alternatlively, such a confidencé reglon 1s a consérvative one,
For really complex problems eveé thilis may be difficult to
obtaln, to say nothing of 1nter§als of the first or the

seéond kind, and we would conslder even this qulite worthwhile,
especially in view of the fact that we consider i1t more im-
portant to estimate this "distance function," poilntwise or
intervalwlse, thap to test (and accept or reject) the usual
null hypothesls as such, A1l confidence intervals obtained

in this section are conservative. For Case (1), (Ho,HlL_we

have a lower bound on y_ , for Case (ii),(Ho,H2L an upper

bound on y, and for Case (111) a lower bound on 7 and/or an
upper bound on y,. For Cases (1iv)~(vii), that is, for

(Hg,H, ) (L =4,5,6,7) we have attempted but have falled so

fér to obtain a lower bound on ™ for Case (iv), an upper

bound on y, for Case (v), a lower bound on y, and an upper
bound on 7. for Case (vi). The trouble seems to stem from

the difficulty in obtalnling a lower bound on ™ that is not
also a lower bound on 7y, OF an upper bound on 7, that is not
also an upper bound on ' However, we find that, 1f we re-
place 7 by 7, = ohy(Z))/chy(Z,) and 7, by 7y = ehy(Z;)/eh, (2,),
then bounds simllar to those we were seekling for

cases (iv)- (vil) become feasible. The question now is, how
are these intervals related to (Ho’Hi) (1 = 4,5,6,7)? For ex-
ample, how 1is [7; > Q] related to (H_,Hy,). In our sense it 1s
not a natural assoclate of (HO,H4). If we consider H::§l==§2==§£

(a dlagonal matrix with all dlagonal elements equal to 5) and
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HZ:y;I > 1, we observe that H: C H and HZ D Hy, and [7;42 u:]
1s really a natural associate of (HZ,HZ), The reader can
interpret similar bounds for the Cases (v), (vi) and (vi1).
We discuss the Cases (v) - (vil) very briefly and Case (iv)
in some detall to exhiblt the kind of mathematics used here
that might also be useful (together with some additional tools)
in obtaining the kind of bounds we sought and have so far
failed to obtain. The maln purpose 1in presenting the results
for'Cgses (iv) - (vi1) is to help in possible further attempts
at obtalning the more meaningful confideﬁce intervals that we
sought.

Case gizz Using the canonical form of the distribution
of the observations and proceeding exactly as 1n Sectlons 5.1
and 5.2 of [6] and Sections 1 and 2 of [8], we can attach a
preassigned probabllity l-a to the reglon in the samplc space

defined by

(3.1) \ch,(.lz‘l/\/; 8101 475 §£l> Sh o

where A, 1s the constant under (2.1) such that

-1
P lenf(8:857) <™y

matrix whose dlagonal elements are al,a2,..., and VARAREEN/

Ho] = l-a, Also, Qa denotes a dlagonal

p

have been already defined to be characteristic roots of glgél.
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Notice that the parameters also enter into the characteriza-

tion of the region. Now (3.1) is equivalent to

-1 -1
ChM(QlA/; §121A/; §l §l§2 > < Al which, 1n turn, 1s equiva-

lent to the set of simultaneous confidence regions

(3.2) (21/,/' 5:1214/7 51 >3

2'§2§11

for all nonnull vectors a(pxl), with aljoint confidence

coefficient 1-a. Equation (3.2) may be rewritten as

(3.3) ( 214/7 8 al/f 8, )ﬂ &'§2.S_1

al

for all nonnull vectors a. Choosing a successively so as
to maximize, one after the other, both sides of (3.3), it
follows that (3.3) implles that

(3.4) eny(Dy (= 5101 5 S7T) < xlci:h,(§2§;1) ,
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We shall be using the phrase '"choosing a successively,...”
repeatedly. What this precisely implles 1s the following.
Choose a 80 as to maximize the left side of (3.3) and denote

this value of a by a*. Then i1t follows that (3.3) implies

-1
a*'3,87 ax

-1
Chlv(gl/ﬁ 518147 51 >-<- M TEFEE -

But the right side of the last inequallty can be further in-
creased to klchM(§2§il>, whence (3.4) follows. This line of
reasoning has been rebeatedly used in [8,9]. Returning to
(3.4) and writing 8, = TT’, where T 1s a triangular matrix
-Wwith zeros above the dlagonal, and remembering that any non-

zero ch(AB) = a nonzero ch(BA), we obtaln from (3.4),

(3.5)  omy [Ty m 0Ty o (27| < Mch,(ééﬁ?) -

But if A 1s a real matrix with real ch(A), then it 1s known
that

(3.6) ch (AA7) < [on (8)12 < [eny(A)1% < chy(AA) .
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Hence, (3.5) implies that

=245 D] = [onlergm)] = omfaani®) < nem(es?)

or, equivalently,

(3.7) Ym 2 H1Cp

where Hy = l/hl. Equation (3.7) 1s thus a confidence interval
‘with a conservative confidence coefficient 2 1l-a,
Case (11): Our starting point here 1s the region with a

preassigned probabllity l-a,

(3.8) Chm(QlA/7 §121A/7 §él> > Ay s

where A, 1s the constant under (2.1) such that

P [chm<§1§é;>\2 A2| Ho] = l-a. Reasoning the same way as we

did in obtaining (3.3) to (3.7), we show that (3.8) implies

where u, = 1/A,. Equation (3.9) 1s thus a confidence in-

terval with a conservative confidence coefficient > l-a.
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Case (111): Our starting point here i1s the region with

preassigned probability 1l-a,

-1 ' -1
(3.10) Chm<_D.1/\/; §121A/; So > 2 7‘3 or Chy(glm §121A/; Sy > < A3

where x3 < ké are constants such that

- ' ' o
P [ohm<§_l_s_21> >Ny or chw(§ HOJ = 1-a, and

‘ further such that the test (111) under (2.1) 1s locally un-

§-l

blased. As before, we notice that (3.10) is equivalent to

the set of simultaneous confidence reglons

l
2 (D15 S1P1y B )5’- hsa'5p8]
a’a ara
(3.11) or
| -1 - -1
af(Dy = 5Dy ST R Marssita
ala ’ S_ . -a_li

for all nonnull vectors a, wlth a Joint confidence coeffl-
clent = l-a. Proceedlng now exactly as 1n Cases (1) and (11),

‘ we find that (3,11) implies
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!
(3.12) Ym 2 uBCm or v £ K3Cy o

where g =‘1/_>\3 and ué = 1/, so that uy > kg, Equation (3.12)
1s thus a confidence reglon with a conservative confidence
coefficient > l-a.

" In case (1), 1f in addition to a lower bound, we
are also interestéd in an upper bound on the y'!'s, or in
'Case (11), if in addition to an upper bound, we are also
interested in a lower bound on the y!s, we can find a cénfi-
dence reglon |

%* %

(3-13) “';CM 2 7M 2 ”m 2“'3 Cm )

with a conservative confidence coefficient > l-a, where M;

and u;* are glven by

(3.14) - P|=x<e

and the condltion of local unblasedness., This is preclsely
the confidence statement that in [8] was assoclated with
Case (vii). From our present vliewpoint this assoclatlon is
inappropriate and the proper assoclation of (3.13) is with
the situatlion mentioned Just before (3.13)._ It may be

noticed, however, that 1ln seeking also an upper bound
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in Case (1) or also a lower bound in Case (11), we are
going beyond what is suggested by the palr (Ho,Hl) or the
palr (Ho’HQ)’ and we are basing our addltional interest on
some addltional conslderation or requlrement.

Case (iv): Taking the approach of [1l], for this case, we

write'_S_I = 21% A58 1.]21//'i and S = D1</_ 208 21—\-2—1/\/—

where 7,'s are ch(gl), 7o's are ch(§2) and Al’£2 are orthogonal
[
matrices defined by the transformations z, = Qigy Ay (10=1,2).
i

We take as our starting point the region

(3.15) Dy —BK <,

where A 1s such that P[DM] = l-a, no matter whatvgl and 2,
happen to be, It 1s known that 1if A 1s positive definlite and
B 1s at least positive semldefinlite, then |

(3.16)  cny(A)eh, (B) < oh (AB) < chy(AB) < chy(A)chy(B) .

Using (3.16), we have
* ]
n(5) 2 onfBs s Pt = onerenf)
K3 ’
chN(§2> < ChM(21/72>ChN(§2§2&2> N(SE>/°hm(22> Hence,

(3.15) implies

, and
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hy (5) ehy (%)
Chy(Z;) ohy(85) &

A,

or, equivalently,
¥*.
(3.17) >

where v = 1/A. Equation (3.17) 1s thus a confidence interval

with a conservative confldence coefficient > l-a.

Cage (v): Using the notation above for Case (1v), we

take as our starting polnt the region

chyf 8]
(3.18) D, /s ar
chp\ o

where A’ 1is such that P[D5] = l-a, no matter what %, and gé

happen to be. Reasoning as in Case (1v) we. end up with

(3.19) T SV f;&é—:—_l% )
m-= iz

where v/ = 1/\'.
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Casge gvilz Our starting point here 1s the region

ch { S
(3.20) Dg: —B < M and
ch | S

I
N skl %
v
>
*
-

where A\*¥ < A¥’ are suchlthat P[D6] = l-q, no matter what
gl and §2 happen to be. Reasonling exactly as before, we end

up with

) chy(8;) . ch (s))
) *1 d * ,
(3.21) Tm SV Cﬁm(_.EQ} = w2V CHM(_§2)

where v* = 1/\* and v*’ = 1/A*% so that v¥* > y*/,

Case (vii): Proceeding as in the Cases (iv)-(v1), we

have

* ' ChM(-&l) Chm (s 1 )

*
.22) 7 v and/or 04 v s
(3.22) oy < o oA T8, / M2 Yo Ry (55)

] 4 . !
where v = 1/Nys Vo = 1/A, and A < Ay are constants such |

0
n (s} WEN
Ch\E ' Chm 2 '
that P M= <A, and/or : > A, | =1-a, no
-ehyl S, ch { S,

matter what §l and §2 happen to be,
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4., CONCLUDING REMARKS

The procedures proposed here are heurlstlc, and
investigatlions are underway as to the propertles of these
'procedures, as, for example, unblasedness, monotonicity and
admissiblility for the two-declslon procedures and anélogous
properties of the three-declsion procedures. Such properties
have already been establlished for some of the two-decision
Ipfocedures, including Case (vii) of (2.1) and (3.13) which
we obtailn by "inverting" the former. Also under considera-
tlon are the problem of partial statements in the sense of
[8] and a generalization to the case of more than two disper-
'slon matrices,

However, the more urgent and lmmediate problems are,
1f possible, to obtain (a) the meaningful bounds on 7y and
M (for Cases (i1v)-(viil)) that we sought but could not
present in this paper and (b) the greatest lower bound on

the conservative confidence céefficients obtalned so far.
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