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1. Introduction.

While using concomitant measurements in the analysis of treatment

effects on the final responses, there is alvre,ys the danger that the

assumed nature of dependence between the final responses and the concomi-

tant measurements may only be an approximation to the true one or may

even be utterly 'Wrong. In order to be able to make any valid inference

about the treatment effects on the basis of the experimental data irre-

spective of 't'1hether the assumed nature of dependence is true or not, we

must introduce a proper randomization in designing the experiment. Such

a randomization is only a necessary step in solving the actual inference

problem at hand, but there still remain other questions to ;be settled.

First, for any given method of proper randomization, "1e have to find a

final decision rule "1hich should be valid even if the assumed nature of

dependence is not true, and secondly, we have to find a method of randomi-

zation among all methods of proper randomization. In settling both these

problems, "16 shall try to increase the precision of experimentation and

decision under the assumed nature of dependence.

In this note, the problem of using a concomitant variable (know before­

hand) to design an experiment and to analyze the outcome for estimating

the differences betlreen several treatment effects has been considered and

~is research was partially supported by the Air Force Office of
Scientific Research.
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an optimum procedure has been obtained in a certain class. 'llhe guiding

principle is the one mentioned above, which is no other than Fishert,

~~1 principle of increasing precision within the f~ework of valid

procedures.

2. Formulation of the problem.

Suppose there are v treatments Tl , ••• , T, vr experimental. v

units Ul , '0' ,U and let Yoj(real) denote the observation arisingvr 1. .

out of the application of T
j

on Ui • Suppose further that there exist

v + vr quantities Ql' ••• , Qv and al , ••• "avr such that

(1)

These quantities Ql'

want to estimate

••• , Q ,
v

are all unknCMl and we

8jj • = Qj - Qjt

for all j ~ jt •

For each i, exactly one of the quantities Yil' •o. , Y117 can be

observed and we put the further restriction of observing exactly r of the

quantities Ylj ' ••• , Yvr, j' In all, there are M=(vr)l/(rl)v such

observational schemes of which a typical one, say the s-th, can be des-

cribed as a partitioning of the set of integers £1,. •• , vr) into

v disjoint sets Gl (s), ... , Gv(S)' each containing r integers such

that Yij is observed in the s-th scheme if' and only if i € G}s).

OUr problem is to choose a design of' experiments P which is a pro-

bability a:J.stribution on the set of integers £1, ••• ,M) ,on 'Which

an observation will be made and if that happens to be s, then observations

will be made on Yij's according to the s-th scheme, and to choose an

estimation rule T 'Which defines for each s =1, ". ,M and for each



j ~ j' = I, ••• , V 1 functions Tjj 'IS of the Yij'S observed in the

s-th scheme, whose values 1d11 be used for estimating Bjjl • We restrict

our selection of (p, T) by the follovr.l.ng conditions:--

must be a linear function of

and for each QI'

(i) Each of the functions Tjjl Is
Yi . I s observed in the s-th scheme.'

J , , ,

(ii) For each j ~ j' =1, .,. , v

aI' ••• , avr for which (1) holds,

M
S~l pes) Tjjl Is = Qj - Qjl

••• , Q 1
V

must be satisfied.

(iii) If further, aI' ••• , avr are stochastically related to known

constants ••• , x in the follomng way,vr

(2)

where t3 is an unknown constant and el , ••• , e are uncorrelated ran-vr

don variables mth cOlml1on mean :tero and a common unknol-m variance (12,

then the average of the variances of the estimators of' all

we denote by Vp(T), must be a bounded function of t3, QI'

2any given (1, all expectations being taken mth respect to

Bjjl , which

••• , Q
k for

el , ••• , evr

as well as mth respect to the distribution P over the observational

schemes.

Let t; denote the class of' design and estimation rules (p, T)

which satisfy conditions (i), (ii) and (iii). We 'Want to find (p*, T*)e~

ouch that

VV*(T*) ~ Vi> (T)

2• •• , Qk' (1 and for arbitrary (p, T) e e •

Consider the follomng condition:--



(ii) ,

a 's
i

If (1) holds for some Ql' ••• , Qv' aI'

are random variables satisfying (2), then

M
£ pes) E Tjjl s = Q. - Qjl

s=l J

• •• I avr
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vThere the

for each j ~ jl =1, .•• , v and for each Ql' ••• , Q , ~, where Ev .

denotes expectation with respect to random variables €l' ••• , €vr

occurring in (2).

Let -e' denote the class of design and estimation rules (p, T)

which satisfy conditions (i), (ii)' and (iii) •

ObViously, -e c {;/

3. Optimum (p, T) in .fi r '\-Then P is fixed.

We shall first restrict our attention to a fixed P for \mich there

exists some (p, T) € iJ' to show tbat (p, T*) is optimum in -8 I

where T* is the least squares estimation rule. For this we require the

following lemmas.

Lemma 1. For each s = 1, ••• , M ,

yes)
(n(s)xl)

= A(s) Q

(n(s)xk) (kxl)

+ £(s)

(n(s)xl)

where £(s)' = (€l(s), ••• , £n(s)(s» is a random vector whose elements

are mutually uncorrelated, each with mean zero and a common unknown variance

2
(J', A( s ) is a known me.trix and Q' = (Ql' ';" , Qk) is an unknown vector.

pes) is a known probability distribution over the set of integers

{I, ••• , M} on vlhich one observation is made and if that happens to be

s, then an observation is made on the random vector Yes). ...
are knovm k-dimensional vectors and lies), i =1, .0' , uj s =1, , M ,

are n(s) - dimensional vectors satisfying
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M
L: pes) E (i(s)' yes) = ci Q, 1;: 1, ••• ,u ,

6=1

then a necessary condition for

to be a bounded function of Q is that

1 = 1, .•• ,u .

for each s with pes) > o. (E denotes expectation over €l(s), ... ,

€n{s){s» •

Proof: Suppose for same i;: i o and for some s ;: S 'ldtho

E f i (So)' y(s) = c1' Q + hi (s)' Q ,
o ,0 0 0 0

where at least one co-ordinate of the vector ~ (so) is non-zero. Let
, 0

that be the j -th co-ordinate of hi (s) and denote it by hi j (so),
00000

Then,

> peso) E ffi (so>' Y(So) c' Q _72
- i

0 0

= peso) fhi (so)' Q _72

0

=

for all Q' € Aj where
o

Therefore, for any arbitrary B,

Q
j

= 0 for all j ~ jo } •

u M
Q _72

L: 1: pes) Effi (s)' y(s)
,

- ~i
i=l 8=1
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can be made larger than B by choosing Q' EA. v71th
Jo

IQ j I > B/ Jp(so1
. 0

and that completes the proof.

Lemma. 2. In the set-up of Lemma 1, if there exists an estimte T of

(c1' Q , ••• , c' Q) of the form T =(TIl' ••• , T I ) =u s sus

(f1(s)' yes), ••• , lues)' Yes»~, s =1, ••• , M which satisfy

M
~ pes) E fi(s)' yes) = c1Q, i =1, ••• , u ,

s=l

and for which

1-u
u M
~ ~

i=l s=1

is baunded, then among all such estimates, Vp(T) is minimized for

* * *Ts = (Tlls ' ••• , Tul a)' s =1, ••• , M

* .
where Tils is the least squares estimate of c1 Q in the linear esti-

mation set..up in the Sooth observational scheme given in (3).

Proof. By virtue of Lemma 1, all linear unbiased estimates T for

which Vp(T) is bounded, must satisfy

E Til s = c1 Q, i =1, ••• ,u ,

for each s with pes) > 0, and it is immaterial how Ts is defined

for those s which have prObability zero under P. An application of

Markoff's theorem on least squares estimates now completes the proof.

Now coming back to our problem let us define an estimation rule T*

such that for each B and for each j Fj' =1, ••• , v ,



*(4) Tjjl Js

where xj(s)

7

= LY/s) - y j ,(s17 - b(s) LX/S) - xjl (sL7

= Z xi/r} yj(s) = ~ Y1j/r, j =1, ... , v;
i e Gj(S) i E Gj(s)

If

and
b(s) = { W (s)/W (13)yx xx

o

if Wxx(S) > 0

if' W ( s) = 0 •
X:l!:

If Xl = ... =X ,W (13) =0 and hence b(s) =0 for each Svr xx

*and Tjj , Js = yj(s) - yj,(s) is the least squares estimate of Qj - Qjl

*under the s-th observational scheme. Also in this case Vp{T) is bounded

for each P.

Excluding the case Xl = ••• =xvr we see that Wxx(s) > 0 for some

*13 and in the observational scheme for each of these s, Tjj'ls is the

least squares estimate of' Qj - Qj' } whereas if for some s, Wxx(s) = 0

and if' there is a design P with positive probability on any of these s"

then it can be easily seen by using leIlll1la 1 that such a design 'With every

accompanying estimation rule is outside the class .(5' and therefore need

*not be taken into consideration. For any other P, Vp(T) is bounded.

An application of' leIlll1la 2 now gives

Theorem 1. If for a fixed design P there exists some (p" T) e -e ro 0

* * ~and if T is as defined in (4), then (Po,T ) e ~ r and for any T

such that (po' T) e -e 1 ,
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The above theorem makes our search for an optimum (p, T) in --e'
much easier. What we have to do nOvT is to consider all P for vThich

Vp{T*) is bounded and then choose the one among them for which Vp{T*)

is smallest.

It is easy to see that for all P having Vp(T*) bounded, the

following expression holds.

if Xl = •••-r

2
~ rl +.1:.-

r L v-1

= xvr

M T -'" (s)
E p{s). ~ (sf ...:.7 otherwise

s=l xx

where Txx =
vr

E
i=l

vr
( E
i=l

Let s* be such that

(5) Wxx(s*) ~ wxx{s), s =1, ••• , M,

and let S* be the set of all permutations of s* i.e. the set of all s'

such that for each j = 1, ••• , v we can find some j' (depending on s I)

such that Gj(s*) =Go,(s'). Obviously, W (s) =W (s*) for all s e 8*.
J xx xx

(If W (s) attains its minimum value for more than one s vThich arexx

not permutations of each other in the above sense, then we shall choose

anyone of them, call it s* and find the set S* of all its permutations.)

Define a design P* as follows ,



9

(6) 1'*(.) = { ~/V! if s E S*

otherwi.se.

Theorems 2 and ; ,'1111 establish that (p*, T*) is the desired

design and estimation rule.

Theorem 2. For all (p, T) E ~ I

Vp(T) ~ Vp*(T*)

,

where p* is defined in (6) and T* is defined in ( 4) •

otherv1ise,

=~r .

by (5)

if

1
v:I ·

1
+-1 •v-

Proof. Since (p, T) E -e I ,

Vp(T) ~ Vp(T*) =

Vp(T) ~ Vp(T*)

2
= 2~ 1 1 +

Theorem ;. (p*, T*) E..e and for all (p, T) E-e ,

Vp(T) ~ Vp*(T*)

Proof. Since ..e c -e " the latter part of the theorem follows from

Theorem 2. To shaw that (p*, T*) E .g , 'We note that since T* obViously

satisfies condition (i) and since Vp*(T*) is always So finite quantity not

depending on 1', Ql' ••• , Qv ' it "1'1111 be enough to verifY condition (ii).

For any j F j' =1, ••• ,v ,
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M

~ P*(s) ~jt Is
8=1

if xl = •••=
1
-tv.

1-,v.

~

SES*

otherwise

W (s)
yx

W (s)
xx

= xvr

(Xj(S) - X.t(s)} 7
J -

= if xl = ••• = xvr

1-,v.

. ~ rx.. (s ).x., (s17
SES*- J J

and that completes the proof.

Remarks. 1) It is doubtful whether the design P* is unbiased in the sense

of Yates [JJ and the author is inclined to believe that it is not though

he could not prove it because even though the expected value of the adjusted

residual mean square under randomilZation becomes involved" there still re-

mains the possibility of getting an unbiased estimator of the variance of

the estimation rule T* under (1) and under randomization according to

P*, in some other 'Way_ We also have to keep in mind the further possibility

that there may be a different estimation rule which is unbiased under (1)

and under P* and the variance of which can be estimated in the desired

manner. However" if we restrict ourselves to the traditional analysis"
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then Cox's £1_7 argument ShOvTS that p* is not unbiased.

2) The result given in this note can be extended 'Without any diffi­

culty to the case where more than one concomitant measurements are available

for each experimental unit.

The problem as formulated in section 2, arose in course of a discussion

that the author had with J. Roy in the Indian Statistical Institute.
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