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1. Introduction.

While using concomitent measurements in the analysis of treatment
effects on the final responses, there is always the danger that the
assumed nature of dependence between the final responses and the concomi-
tant measurements may only be an approximation to the true one or may
even be utterly wrong. In order to be able to maske any valid inference
about the treatment effects on the basis of the experimental data irre-
gspective of whether the assumed nature of dependence 1s true or not, we
must introduce a proper randomization in designing the experiment. Such
a randomization is only a necessary step in solving the actuasl inference
problem at hand, but there still remain other questions to be settled.
First, for any given method of proper randomization, we have to find a
final decision rule which should be valid even if the assumed nature of
dependence is not true, and secondly, we have to find a method of randomi-
zation among all methods of proper randomization . In settling both these
problems, we shall try to increase the precision of experimentation and
decision under the assumed nature of dependence.

In this note, the problem of using & concomitant variable (known before-
hand) to design an experiment and to analyze the outcome for estimating

the differences between several treatment effects has been congidered and

1This research was partially supported by the Alr Force Office of
Scientific Research.



an optimum procedure hags been obtained in a certain class. The gulding
principle is the one mentioned above, which is no other than Fisher's
jfg? principle of increasing precision within the fremework of valid

procedures,

2, PFormulation of the problem,

Suppose there are v treatments Tl’ ver Tv’ vr experimental
units Ul’ vee Uvr and let yij(real) denote the observation arising

out of the application of T, on U,. Suppose further that there exist

J i
v + vr Qquantities Ol, ves Gv and By ves s B, such that

(1) gy = 84 +9 s - 1ZiZvr, 1<3<v.

These quantities Gl, ees 3 QV, al, vee avr are all unknown and we

want to estimate

for all J # 3' .
For eaéh i, exactly one of the quantities Vyp2 ov0 2 yiv can be
observed and we put the further restriction of observing exactly r of the

quantities Y130 vec 2 In all, there ave M = (ve)3/(xt)Y  such

Yer, 3
ocbservational schemes of which & typical one, say the s-th, can be des-
cribed as a partitioning of the set of integers {1, ... , vr}  into

v disjolnt sets Gl(s), cee o Gv(s), each containing »r integers such
that ¥i3 is observed in the s-th scheme if and only if 1 € Gj(s).

Our problem is to choose a design of experiments P which is a pro-

bability distribution on the set of integers {1, ..., M} s on which

an observation will be made and if that happens to be s, then observations

will be made on yij‘s according to the s-th scheme, and to choose an

estimation rule T which defines for each s =1, ... ; M and for each



3

of the yij’s observed in the

j "= 1, .0 funetions T,
it ’ » Vo, Jatls

s-th scheme, whose va;ues wi;l be used for estimating Sjj' + We restrict
our selection of (P, T) by the following conditionsi-- ’

(i) Each of the functions TJj?]s mst be a linear funetion of
yij's observed in the s-th 'scbgpe.‘ N
(i;) For each J # j' =1, «ss » v and for each 19 <o 5 85

815 +e0 5 8 for which (1) holds,

vr

M

T P(s) T

g=1 JJ'!B = & °

Jt
must be satisfied.

(iii) 1If further, 8ys «»+ » &, are stochastically related to known

constants Xys eee s Ko in the following way,
(2) &, = B Xy o€y 7)
wvhere B is an unknown constant and €12 vee s €y are uncorrelated ran-
don variables with common mean zero and s common unknovn variance 02 ’
then the average of the variances of the estimstors of all 533' s which
we denote by VP(T)’ mst be a bounded function of B, 6,5 ... , 6 for
any given 02, all expectations being taken with respect to €12 cee s €
as well as with respect to the distribution P over the observational
schenes.

Let f; denote the class of design and estimation rules (P, T)
vhich satisfy conditions (i), (ii) and (iii). We want to find (P*, T*)e‘f;

guch that

V(%) < V(1)

for all B, 655 ... , @ o° and for arbitrary (P, T) ¢ 6 .

k,
Consider the following conditiont--



(i1)* 1If (1) holde for some 15 eoe _OV, By eee s B where the

a,'s are random variables satisfying (2), then

i
M
sil P(s) BTy, = O -9y

for each j# 3j' =1, ... » v and for each ©1s «ee s Oy B? where E
denotes expectation with respect to random variables €17 eee s €.
occurring in (2).

Let -@ ! denote the class of design and estimation rules (P, T)

which satisfy conditions (1), (ii)' and (iii) .

obviously, 6 < &~ .

3. Optimum (P, T) in 4' vhen P is fixed.

We shall first restriect our attention to a fixed P for which there
exists some (P, T) ¢ ' to show that (P, T*) ig optimm in &'
where T%* 1is the least squares estimgtion rule. For this we require the
following J.emmas.

Lemma 1. For each 8 =1, ees » M »

(3) y(s) = A(s) 2 + es)
(n(=)x1) (n(s)ux) (kx1)  (n(s)xl)
vhere e(s)! = (el(s), ces s en(s)(s)) is a random vector whose elements

are mutually uncorrelated, each with mean zero and a common unknown variance
0'2, A(s) 1is a known matrix and o' = (Ql, ies 3 Qk) is an unknowm vector.
P(s) is a known probability distribution over the set of integers

{1, ... , M} on vhich one observation is made and if that happens to be

s, then an observation is made on the random vector y(s). It Cys ver 5 C
are known k-dimensional vectors and (i(s), i=1, coeu 8=l vo. , M,

are n(s) - dimensional vectors satisfying



M
® 2 B(s) B () y(s) = ¢ 6 , i=1, ., u
8=

then a necessary condition for
u M 5
T = P(s) E j‘li(s)* y(s) - c} o7
i=l s=1
to be a bounded function of © is that

E fi(s)' v(s) = ey 0 , i=1, oo u
for each s with P(s) > 0. (E denotes expectation over el(s), vee s

Proof: Suppose for some 1 = i o and for some s = & o with

P(so) > 0,

t - ! H
E (io(so) ¥(s) = cio o + hio(so) o ,

vhere at least one co-ordinate of the vector h:l (= o) is non-zero. Let
: o

‘ that be the jo-th co-ordinate of b, (so) end denote it by h, 3 (so).
o) ovo
Then,
u M o
) ]
2 = P(s) E[{(s) ¥(s) - c} 87
i=1 &=l

tvy

P(s)) E/A; (s) w(s)) - e o7
o (o]

P(s,) [ (s.))' © 72
0

P(s,) {hioj' (s,) ) 2 og
o}

o]

for all o' ¢ A where
‘jo

A, = (6, «v s O 0, =0 forall J #3,) -

J

o

u M ,
. Therefore, for any arbitrary B, I P(s) E/ A i(s)' yv(s) - ci © __72
i=l g=1



can be made larger than B by choosing €' ¢ Aj with
o]

[930[ > B/JF(6,) lhio'jo(%)l )

and that completes the proof.

Lemms 2. In the set-up of Lemms 1, if there exists an estimate T of

L 1 = ces =

((1(9)' y(s), vos [u(s)' y(s)), s =1, ... , M vhich satisfy

M .
Zl P(s) B [i(s)' y(s) = ej© , 1=1, .0 u ,
a=

and for which

m = 2 3 3 Be) B/ 72
v.(T) = = Y bY Pls) B/ T -c! o
P U 40 et 1 ls 1 -

ie bounded, then among all such estimates, Vf(T) is minimized for

* ¥* *
Ts = (TllS’ cee Tuls) F) 8 = 1, ses 3 M

" )
vhere Ti]s is the least squares estimate of ci @ in the linear esti-
mation set-up in the s-th observational scheme given in (3).

Proof. By virtue of Lemma 1, all linear unbiased estimates T for

vhich VP(T) is bounded, must satisfy

B Tils = ci e, 1=1, 0o ,u ,
for each s with P(é) > 0, and it is immaterial how T is defined
for those s which have probabilify zero under P. An application of
Markoff's theorem on least squares estimates now completes the proof.
Now coming back to our problem let us define an estimation rule T*

such that for each & and foreach j £ J' =1, v0o0 , v,



*

(l“) Tjj'!s = [—y‘j(s) - 3}31(8_27 = b(S) [EJ(S)‘EJI(S)__7

vhere X (é) = Iz x, /r vy (s) = = Vas/T J=1l, e , V3
R ¢, (s) R N ¢,(s) 13 ’ ’
() = Z [, - %, (s)
If W..(8) = Z b [ %, = X.(8)_ s
X J=1 1 € G,(s) i
() = = %(s)7
W (8) = = s v,/ %, - % (8
yx J=1 ie¢ Gj(s) ljl_ 1 3= ’
and
b(s) = Wyx(s)/wm(s) if Wxx(s) >0
0 if wxx(s) =0 .
If Xy = .00 =X Wxx(s) = 0 and hence b(s) =0 for each s
* - -
and Tjj'ls = yj(s) - yj,(s) is the least squares estimate of Oj - GJ,

*
under the s-th observational scheme. Also in this case V?(T ) is bounded
for each P.

Excluding the case x; = ... = X Ve see that Wix(s) >0 for some

*
8 and in the observational scheme for each of these s, Tjj']s is the

least squares estimate of 9, - €

j .j',
and if there is a design P with positive probability on any of these s,

vhereas 1f for some &, Wix(s) =0

then it can be easily seen by using lemms 1 that such a design with every

accompanying estimation rule is outside the class {g' and therefore need
. *

not be taken into consideration. For any other P, Vf(T ) 1s bounded.

An application of lemma 2 now gives

Theorem 1. If for a fixed design P_ there exists some (Po, T) ¢ {2 '
* ¥*
and if T is as defined in (4), then (P_,T) € £ ' eand for any T

such that (P, T) e 4,

Vf (1) > v, (T%) .
o o



The above theorem makes our search for an optimum (P , T) in 6 !
much easier. What we have to do now is to consider all P for which
VP('I‘*) is bounded and then choose the one emong them for which VP(T*)
is smallest, |

It is ea.sy to see that for all P having VP(T*) bounded, the

following expression holds.

2

20

VP(T*) - —r" if xl = esee = xvr

2 M T = W_(s)

20 1 XX xx

1l 4+ — Z P(s) . otherwise
r v-1l sl (s) Wxx(s) /
vr o vr 2/
vhere T = I x; - (Z x, ) v .
TXX 1=1 i =1 i

Y., Optimm (P, T) in 4 .

We shall now find the optimum (P, T) in & ' and will show that
this optimum in ‘6 ' is actually contained in 6 and since 6 C@ Y
1t will prove that this is optimm in € .

Let &% be such that
(5) Wxx(s*) > WXX(S) 3 8=1, ¢os , M,
and let S* be the set of all permutations of &% 1i.e. the set of all s'
such that for each j =1, ... , v we can find some J' (depending on s')
such that Gj(s*) = Gj,(s'). Obviously, Wxx(s) = Wxx(s*) for all s e S%.
(1 Wxx(s) attains its minimm value for more than one s vhich are
not permutatlions of each other in the above sense, then we shall choose
any one of them, call it s* and find the set S¥% of all its permutations.)

Deflne a design P¥ as follows ,



(6) P#(s) = { 1/v} if s e &%
0 otherwise.

Theorems 2 and 3 will establish that (P*, T*) is the desired

design and estimation rule.

Theorem 2. For all (P, T) e 6’ ’

Vp(T) > V(%)
where P* is defined in (6) and T ie defined in {4).

Proof. Since (P, T) e 4 ',

20
VP(T) > VP(T*) = = VP*(T*) If % = e =X -
Otherwise, VP('I‘) > VP(T*)
CE e B S )
- g=1 xx
oo T = Wxx(s*)

v

T [t +'-J%']'_ ’ €] 7 vy (5)

WXX

1}

Vou(T*) .

Theorem 3. (P¥, T#) e 6 and for all (P, T) e 6 ’

Vp(T) > Vo,(T*) .
Proof. Since 5 C @ ', the latter part of the theorem follows from
Theorem 2, To ghow that (P¥, T*) ¢ 6 » we note that since T¥% obviously
satisfies condition (i) and since VP*(‘I‘*) is always a finite quantity not
depending on B, Ql’ vee 3 Ov s it will be enough to verify condition (ii).

Forany J#3' =1, voo 5 v
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M
i P*(S) '1‘3(.3' ‘S

8=1
1 - -
= = Sis* A yj(s)- yj,(s);7 If X = e = X
1 - - W&x(s) - -
7! sis* Zt { Yd(s) - YJ|(5) } - W;;T§7 EEJ(S) - ij(s)1;7
otherwise
N _ _ ,
= (gj - @jv) t 5 sis* VA aj(s) - aj,(qj7 I X = e =X
1 - -
(65 = S5 r T sis*[aJ(S) - 250(8) 7
5 5 E(s%) E,(s%)
L a,Xx,-1r I a,(s*) x (s¥*
S 171 IR J -
. A=l J=1 .2 Zﬁij(s)-xj,(§17
W (s%) . v ! seS¥*
o= gj - Qj' ]

and that completes the proof.

Remarks, 1) It is doubtful whether the design P¥* is unblased in the sense
of Yates.Zf§7 and the suthor is inclined to believe that it is not though
he could not prove it because even though the expected value of the adjusted
residual mean square under randomigation becomes involved, there still re-
mains the possibility of getting en unbiased estimator of the variance of
the estimation rule T* under (1) and under randomization according to

P*, in some other way. We also have to keep in mind the further possibility
thet there may be a different estimation rule which is unbiased under (1)
and under P¥ and the variance of which can be estimated in the desired

manner. However, if we restrict curselves to the traditional analysis,
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then Cox's /717 argument shows that P* is not unbiased;
2) The result given in this note can be extended without any diffi-
culty to the case where more than one concomitant measurements are available

for each experimental unit.

The problem as formulated in section 2, arose in course of a discussion

that the author had with J. Roy in the Indian Statistical Institute.
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