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By a symmetric (sy.) matrix; we shall mean here a symmetric matrix
with real elements only. We establish the bounds on the i-th maximum
characteristic (ch.) root (denoted by chi) of (i) AB vhere A is any
sy. matrix and B is any sy. positive semi-definite (p.s.d) matrix, and
(ii) of A+ B where A and B are both symmetric matrices. Anderson
and Gupta [1], using somewhat different methods, established the bounds for
the case (i) when ’é was sy. p.s.d. and (E was S8y. p.d. All the results
established here are valid for hermitian matrices (with possibly complex
elements) too.

We require the following three lemmas, which are given by Bellman [2].
Lemma 1: Let i\/ be any sy. matrix of order p and let x, g,j
(3 =1, 2, ..., i-1) ©be column vectors with p elements, real and finite.

Then

X' A X
ch,A = minimum maximuim = )

Note that we replace the condition of S}j'gj =1 (3 =12,2 ..., i-1)

given by Bellman [2] for Courant-Fischer min-max. theorem by any £¥j

{(j = , 2, ..., i-1) having real and finite elements. It is easy to see

that by doing this, we are not changing the value of ChiA‘

lThis research was supported by the Mathematics Division of the
Air Force Office of Scientific Research.
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Lemma 2: Let A, = (a;ij), i, j=1,2, ..., r andr=1,2, ..., p be

a sequence of sy. matrices. Then

chk+l (fé'r+l) < chk(‘f.\‘:r) < Chk(§r+l)
Lemma 3: Let é and B, Dbe two matrices of respective order pxn and

nxp with n >p. Then

chi éBN= Chi BA, for all positive ch. roots and
Chi AB = chn__p +i ﬁl?li.) for all negative ch. roots.

Theorem 1: Let 'é be a sy. matrix of order p and (]§, a sy. matrix of
order p, be p.s.d, of rank r (5_ p). Let a and b denote respectively
the number of positive and the number of negative ch. roots of réB Then

for any i, j =1,2,..., a

chB ch -j~ < chi&g_ chjgchl J+l’é

end for 1 =p-b+1, p-b+2, ..., p and j =1, 2, ..., T,

ChJE Chr+i-j,‘% < chi ﬁ?,ﬁ Chj}i, Chr+i-j—(p-l)‘§f
Proof: Since B 1is sy. p.s.d., we can find an orthogonal matrix A such
that B = A D, A', where D, = diagonal (wl,” 0,050 .,0),
D, = dieg. (wl,. ..,wr) and w, >w, > ... >w, >0 are the nonzero ch.

roots of B, Let § be a sub-matrix of order r of (A A A'), obtained

by deleting the last (p-r) rows and (p-r) columns of A A A'. Then by

~ A NS

lemma 3, it is easy to see that

(1) ch,AB = ch,SD = ch, (% g;) fori=1, 2, ..., a and
(2) hp r43AB = ch, (SD ) ch, (B’S % for i=r-b+l, r-b+2,..., T

&

where (y‘w)2 = D, . Then by lemma 1,



(3) ch,(SD ) = minimum maximum X ' -
LoNe gﬂ x' gh=0 X'x
h=1,2,.

where Xx and &, (h =1,2,...,1i-1) are column vectors with r elements,

real and finite., Now minimize over a sub-sSpace given by

% _54n = (o,...,0, ch,o,...,O), ¢, 1is nonzero finite and real at

the h-th place, for h = 1,2,...,3-1, end @ = (0,...,0, Yy & h)
for h = 1,2,...;1-3. Then x' gi-j+h =0 for h=12,...,j-1 give

Xp = Ky = oeeoo= Xy o= 0. Now let us write y' = (\/:bj Xyseens \/:Dr Xr) s

8 = (w:j:%d:j,h’ . u 1 r h) for h=1,2, ..., i-j, §; be a sub-matrix
of S, obtained by deleting the first (j-1) rows and (j-1) columns of 8,

and D, = diag. (w L, W, . wr). Note that the elements of y and 8

(h =1, 2, ..., i-j) are finite and real, and the minimum over a sub-set

g+

must always be greater than or equal to the minimum over the larger set.

Hence (3) gives

y' f’,l P
(4) ch,(SD ) <  minimum maximum
et = 5 ¥'6, =0 1
=h = =h y' D2 N
h=1,2,...,i-j “
-1 -1 1t -1
Since v D2 y > oy y'y or (y D, v) < wj(y_'z) , (&) gives
'S
(5) ¢ch,(8D ) <  minimum maximm St - (ch, . §1)w
1Yo’ - . _ \ J i-J+1
&, ¥y' §,=0 AN A

h=1,2,...,i-j

Using the lemma 2, and 0y = chj Dy (5) gives

(6) ch, (SD ) < (eh, 5) (ch D )

i-J+1 ~



Now consider

-1
hypsagS = CBpyg. j[(»wu)(m* 1 < (cby 8D )(eh, G+1 A )
-1 -1
and Chr-j+l D= (chj (]V)w) . Hence, we get
(7) ch; 8Dy 2 (Ch ) e JN)

Combining (6) and (7), and using lemma 2 for § matrix, we get

(8) (ch B) (chpﬂ 3 A A) < chy 8D < (ch B) (chl J+1A)

for i, j=1, 2, ..., r.
Now, the use of (1) and (2) in (8) proves the theorem 1.

Corollary 1: ILet ({\I be a sy. matrix, 3 be sy. p.s.d. of rank r and

C be sy. p.d. Then for any i, j =1, 2, ..., a ( = number of positive
ch. roots of AB) ,
..1)

(chj gg)(chp+i_j AC ) < ch, AB < (ch BC)(chl 01 A AC

and for j=1, 2, ..., v and i=p-b+ 1, p-Db+2, ..., D

(b (: number of negative ch. roots of (@;g‘) ,

: -1
(chj gg) (chr+i s ) < ch, AB < (ch BC)(chHi_j_(p_l)j:\.vCM )

Proof+ Since ¢ is,sy. p.d., we have C = E.‘J’I&"' where T is a non-
singular matrix., Then by lemma 3,

nyhB = oy (AT 1 T BT = oy (T4 TT(E'E)] and then by
theorem 1, we get the corollary 1.

Corollary 2: Let r = p in corollary 1. Then, we get for any

i,j=l, 2’ .oa)P ]

-1
(chjgg/) (ch1oi AC ) < ch ABZ (ch BC) (ch e A ACTT) .
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The above result was established by Anderson and Gupta [1] by using
somevhat different methods under the condition of A being p.s.d., but
we have proved it for é any sy. matrix.
Corollary 3: As a special case of corollary 2, we get for any
i=1,2, ..., p

max. [(chpECﬂ?(chié'CJl), (chigcz_)(chpANCLl)] < chi(ég_)

< min [(ch BC)(chACTY), (ch,BC)(ch ACTT)],

Theorem 2: Let A and B De any two sy. matrices of order p. Then
for any i,j = 1,2,..., p ,

ch,B+ch ., .A < ch, (A+3B) < ch,B+ ch, A
Jeo pHi-j~ = 1 Y A - J~ i-3+1~

Proof: Since B is a sy, matrix of order p, there exists an orthogonal

matrix A such that B = AD A' where D = disg. (wl, c)2,...,wp) and

@y > O > 2 wp are the ch. roots of E Moreover, by lemma 1, we have
x'(AB)x\ XAx x'Bx
ch, (A+B) = minimum  meximum — )= = 4 -
L X'x x'x x'x

Let us write A'x =y and A'Q = 8 (h=1, 2, ..., i-1). Then
y'(8'A0y ¥ D, ¥
(9) chi(.:}ﬂ?) = minimum maximim : v
= 9'B, =0 'y ¥y

h=12,...,i-1

Now minimize over the sub-region given by

~'h+i-j = (0,...,0, Cp 0,...,0), c, 1s nonzero finite and real, for

r=1,2 ..., j-1, and B = (o,...,0, sj,h, e ﬁr,h) for h = 1,2,...,1i-3.

' _ ._ i = = = =
Then y NBh+i-j =0(h=12,...,3-1) give Y] = YpR e = V5, 0. Now
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let us write 2 = (yj,...,yr), 8 = ( Bj,h""” Br,h)(h =1,2,...,i-3),

D5 = diag. (wj, © ..,wp) and A, be the sub-matrix of A, obtained by

J+1’°
deleting first (j-1) rows and (j-1) columns of (A':%;). With t his, it is

clear that
2AL 2Dz
Chi(A+,§) < minimum nmaximum ~3 ERERAC
£ >
5 z'g=0 | 'z 2'z
h=12,...,i-]
242
< minimum maximum + 0 = (ch, 1 Al) + o,
T 218, =0 2% FedEL J
2h 2% 22
h=1,2...,i-]
That is, using lemms 2,
chi(é+§) < cnj}i + chi_j+l A
For the other part, chjgl = chj[(./gg) + (-5)] < chi(§+§) + chj_i+l(-i\) .

But Chj-i%-l(".f‘) = - Chp+i—j A. Hence we get

ch,(A+B) > ch,B+ ch . .A.
it~ = J~ p+i-Ja~
Thus, the theorem 2 is established.

Corollary L4: As a special case of theorem 2, we have for any 1 = 1,2,...,p

max. [chig + Chp‘,A., s Chp]?f" chi.f}j < Chi(f}jg) < min, [chlB:chi}b chizﬁchl%].

The author thanks Professor S. N. Roy for his kind help.
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