UNIVERSITY OF NORTH CAROLINA

Department of Statistics Chapel Hill, N. C.

A NOTE ON THE INEQUALITY OF THE CHARACTERISTIC ROOTS OF THE PRODUCT AND THE SUM OF TWO SYMMETRIC MATRICES

Ъу

C. G. Khatri April 1964

Contract No. AF-AFOSR-84-63

This research was supported by the Mathematics Division of the Air Force Office of Scientific Research.

Institute of Statistics Mimeo Series No. 387

A NOTE ON THE INEQUALITY OF THE CHARACTERISTIC ROOTS OF THE PRODUCT AND THE SUM OF TWO SYMMETRIC MATRICES 1

by

C. G. Khatri

University of North Carolina and Gujarat University

By a symmetric (sy.) matrix, we shall mean here a symmetric matrix with real elements only. We establish the bounds on the i-th maximum characteristic (ch.) root (denoted by ch_i) of (i) AB where A is any sy. matrix and B is any sy. positive semi-definite (p.s.d) matrix, and (ii) of A + B where A and B are both symmetric matrices. Anderson and Gupta [1], using somewhat different methods, established the bounds for the case (i) when A was sy. p.s.d. and B was sy. p.d. All the results established here are valid for hermitian matrices (with possibly complex elements) too.

We require the following three lemmas, which are given by Bellman [2]. Lemma 1: Let A be any sy. matrix of order p and let \underline{x} , $\underline{\alpha}$ j

(j = 1, 2, ..., i-1) be column vectors with p elements, real and finite. Then

$$ch_{i} \stackrel{A}{\sim} = \underset{j = 1, 2, ..., i-1}{\min maximum} \left(\frac{\underline{x}' \stackrel{A}{\sim} \underline{x}}{\underline{x}' \underline{x}} \right).$$

Note that we replace the condition of $\underline{\alpha}_{\mathbf{j}} \underline{\alpha}_{\mathbf{j}} = 1$ ($\mathbf{j} = 1, 2, ..., i-1$) given by Bellman [2] for Courant-Fischer min-max. theorem by any $\underline{\alpha}_{\mathbf{j}}$ ($\mathbf{j} = 1, 2, ..., i-1$) having real and finite elements. It is easy to see that by doing this, we are not changing the value of $\mathrm{ch}_{\mathbf{j}} \underline{A}$.

¹This research was supported by the Mathematics Division of the Air Force Office of Scientific Research.

Lemma 2: Let $A_r = (a_{ij})$, i, j = 1, 2, ..., r and r = 1, 2, ..., p be a sequence of sy. matrices. Then

$$\operatorname{ch}_{k+1} \, \left(\begin{smallmatrix} A \\ \sim r+1 \end{smallmatrix} \right) \ \leq \ \operatorname{ch}_{k} \left(\begin{smallmatrix} A \\ \sim r \end{smallmatrix} \right) \ \leq \ \operatorname{ch}_{k} \left(\begin{smallmatrix} A \\ \sim r+1 \end{smallmatrix} \right) \ .$$

<u>Lemma 3</u>: Let $\overset{A}{\sim}$ and $\overset{B}{\sim}$ be two matrices of respective order pxn and nxp with $n \geq p$. Then

 $ch_i \stackrel{AB}{\sim} = ch_i \stackrel{BA}{\sim}$ for all positive ch. roots and $ch_i \stackrel{AB}{\sim} = ch_{n-p+i} \stackrel{BA}{\sim}$ for all negative ch. roots.

Theorem 1: Let A be a sy. matrix of order p and B, a sy. matrix of order p, be p.s.d. of rank r (\leq p). Let a and b denote respectively the number of positive and the number of negative ch. roots of AB. Then for any i, j = 1, 2, ..., a

and for i = p - b + 1, p - b + 2, ..., p and j = 1, 2, ..., r,

$$\mathrm{ch}_{j^{\sum}_{r}} \mathrm{ch}_{r+i-j^{A}_{r}} \leq \mathrm{ch}_{i} \underset{\sim}{\mathrm{AB}} \leq \mathrm{ch}_{j^{\sum}_{r}} \mathrm{ch}_{r+i-j-(p-1)^{A}_{r}}.$$

<u>Proof:</u> Since B is sy. p.s.d., we can find an orthogonal matrix Δ such that $B = \Delta D_1 \Delta'$, where $D_1 = \text{diagonal } (\omega_1, \dots, \omega_r, 0, \dots, 0)$, $D_{\omega} = \text{diag. } (\omega_1, \dots, \omega_r)$ and $\omega_1 \geq \omega_2 \geq \dots \geq \omega_r > 0$ are the nonzero ch. roots of B. Let S be a sub-matrix of order C of $(\Delta A \Delta')$, obtained by deleting the last (p-r) rows and (p-r) columns of $\Delta A \Delta'$. Then by lemma 3, it is easy to see that

(1)
$$\operatorname{ch}_{\mathbf{i}} AB = \operatorname{ch}_{\mathbf{i}} SD = \operatorname{ch}_{\mathbf{i}} (D SD SD)$$
 for $i = 1, 2, ..., a$ and

(2)
$$\operatorname{ch}_{p-r+i\overset{AB}{\sim}\sim} = \operatorname{ch}_{\mathbf{i}}(\overset{SD}{\sim}\omega) = \operatorname{ch}_{\mathbf{i}}(\overset{D-S}{\sim}\overset{D}{\sim}\omega) \qquad \text{for i=r-b+l, r-b+2,..., r ,}$$
 where $(\overset{D-}{\sim}\omega)^2 = \overset{D}{\sim}\omega$. Then by lemma 1,

(3)
$$ch_{1}(SD_{n}) = \min \max \max_{\underline{\alpha}_{h}} \max \underbrace{\underline{x' \ \underline{\alpha}_{h} = 0}}_{h = 1, 2, \dots, i-1} \left(\frac{\underline{\underline{x' \ \underline{\alpha}_{w} \ \underline{x' \underline{x}}}}_{\underline{x' \underline{x}}} \right)$$

where \underline{x} and $\underline{\alpha}_h$ (h = 1,2,...,i-1) are column vectors with r elements, real and finite. Now minimize over a sub-space given by

 $\underline{\alpha}_{i-j+h}=(0,\ldots,0,\ c_h,0,\ldots,0),\ c_h\ \text{is nonzero finite and real at}$ the h-th place, for $h=1,2,\ldots,j-1$, and $\underline{\alpha}_h=(0,\ldots,0,\ \underline{\alpha}_{j,h},\ldots,\ \underline{\alpha}_{r,h})$ for $h=1,2,\ldots,i-j$. Then \underline{x}' $\underline{\alpha}_{i-j+h}=0$ for $h=1,2,\ldots,j-1$ give $x_1=x_2=\ldots=x_{j-1}=0.\ \text{Now let us write}\ \underline{y}'=(\sqrt{\omega}_j\ x_j,\ldots,\sqrt{\omega}_r\ x_r)\ ,$ $\underline{\delta}_h=(\omega_j^{-\frac{1}{2}}\alpha_{j,h},\ldots,\omega_r^{-\frac{1}{2}}\alpha_{r,h})$ for $h=1,2,\ldots,i-j,\ S_1$ be a sub-matrix of S, obtained by deleting the first (j-1) rows and (j-1) columns of \underline{S} , and $\underline{D}_2=\text{diag.}\ (\omega_j,\ \omega_{j+1},\ldots,\ \omega_r)$. Note that the elements of \underline{y} and $\underline{\delta}_h$ $(h=1,2,\ldots,i-j)$ are finite and real, and the minimum over a sub-set must always be greater than or equal to the minimum over the larger set. Hence (3) gives

(4)
$$\operatorname{ch}_{\mathbf{i}}(\operatorname{SD}_{\omega}) \leq \min_{\substack{\underline{\delta}_{h} \\ h = 1, 2, \dots, \mathbf{i} - \mathbf{j}}} \max_{\substack{\underline{\gamma}' \underline{\delta}_{h} = 0}} \left(\frac{\underline{y}' \, \underline{S}_{1} \, \underline{y}}{\underline{y}' \, \underline{S}_{2}^{-1} \, \underline{y}} \right).$$

Since $\underline{y}', \underline{D}_{2}^{-1}, \underline{y} \geq \omega_{j}^{-1}, \underline{y}', \underline{y}$ or $(\underline{y}', \underline{D}_{2}^{-1}, \underline{y})^{-1} \leq \omega_{j}(\underline{y}', \underline{y})^{-1}, (4)$ gives

$$(5) \quad \operatorname{ch}_{\mathbf{i}}(\operatorname{SD}_{\omega}) \leq \quad \underset{h = 1, 2, \dots, i-j}{\operatorname{minimum}} \quad \underset{\underline{\delta}_{h}}{\operatorname{maximum}} \quad \left(\frac{\underline{y}' \, \underline{S}_{1} \, \underline{y}}{\underline{y}' \, \underline{y}}\right) \omega_{\mathbf{j}} = \left(\operatorname{ch}_{\mathbf{i}-\mathbf{j}+1} \, \underline{S}_{1}\right) \omega_{\mathbf{j}}$$

Using the lemma 2, and $\omega_j = ch_j \sum_{\omega}$, (5) gives

(6)
$$\operatorname{ch}_{\mathbf{i}}(\operatorname{SD}_{\sim}) \leq (\operatorname{ch}_{\mathbf{i}-\mathbf{j}+\mathbf{l}} \operatorname{S}) (\operatorname{ch}_{\mathbf{j}} \operatorname{C}_{\omega})$$
.

Now consider

$$\operatorname{ch}_{r+i-j} \overset{S}{\sim} = \operatorname{ch}_{r+i-j} [(\overset{SD}{\sim}_{\omega})(\overset{D^{-1}}{\sim})] \leq (\operatorname{ch}_{i} \overset{SD}{\sim}_{\omega})(\operatorname{ch}_{r-j+1} \overset{D^{-1}}{\sim})$$
 and
$$\operatorname{ch}_{r-j+1} \overset{D^{-1}}{\sim}_{\omega} = (\operatorname{ch}_{j} \overset{D}{\sim}_{\omega})^{-1}. \text{ Hence, we get}$$

- (7) $\operatorname{ch}_{\mathbf{i}} \overset{\operatorname{SD}}{\sim} \overset{\operatorname{>}}{\sim} (\operatorname{ch}_{\mathbf{j}} \overset{\operatorname{D}}{\sim}) (\operatorname{ch}_{\mathbf{r+i-j}} \overset{\operatorname{S}}{\sim})$ Combining (6) and (7), and using lemma 2 for $\overset{\operatorname{S}}{\sim}$ matrix, we get
- (8) $(\operatorname{ch}_{j \gtrsim 0})$ $(\operatorname{ch}_{p+i-j} \stackrel{A}{\sim}) \leq \operatorname{ch}_{i} \stackrel{\operatorname{SD}}{\sim} \omega \leq (\operatorname{ch}_{j \gtrsim 0})$ $(\operatorname{ch}_{i-j+1} \stackrel{A}{\sim})$

for i, j = 1, 2, ..., r.

Now, the use of (1) and (2) in (8) proves the theorem 1.

Corollary 1: Let A be a sy. matrix, B be sy. p.s.d. of rank r and C be sy. p.d. Then for any i, j = 1, 2, ..., a (= number of positive ch. roots of AB),

 $(\operatorname{ch}_{\mathbf{j}} \overset{\operatorname{BC}}{\sim}) (\operatorname{ch}_{\mathbf{p}+\mathbf{i}-\mathbf{j}} \overset{\operatorname{A}}{\sim} \overset{\operatorname{C}^{-1}}{\sim}) \ \leq \ \operatorname{ch}_{\mathbf{i}} \overset{\operatorname{AB}}{\sim} \leq (\operatorname{ch}_{\mathbf{j}} \overset{\operatorname{BC}}{\sim}) (\operatorname{ch}_{\mathbf{i}-\mathbf{j}+\mathbf{l}} \overset{\operatorname{AC}^{-1}}{\sim})$ and for $\mathbf{j} = 1, 2, \ldots, r$ and $\mathbf{i} = p - b + 1, p - b + 2, \ldots, p,$ (b(= number of negative ch. roots of $\overset{\operatorname{AB}}{\sim}$),

$$(\operatorname{ch}_{\mathtt{j}} \underset{\sim}{\operatorname{\mathbb{BC}}}) \ (\operatorname{ch}_{\mathtt{r+i-j}} \underset{\sim}{\operatorname{\mathbb{AC}}^{-1}}) \le \operatorname{ch}_{\mathtt{i}} \underset{\sim}{\operatorname{\mathbb{AB}}} \le (\operatorname{ch}_{\mathtt{j}} \underset{\sim}{\operatorname{\mathbb{BC}}}) (\operatorname{ch}_{\mathtt{r+i-j-(p-1)}} \underset{\sim}{\operatorname{\mathbb{AC}}^{-1}}) \ .$$

<u>Proof</u>: Since C is, sy. p.d., we have C = TT' where T is a non-singular matrix. Then by lemma 3,

 $\operatorname{ch}_{\overset{\cdot}{1} \overset{\cdot}{\sim} \overset{\cdot}{\sim}} = \operatorname{ch}_{\overset{\cdot}{1}} (\overset{\operatorname{AT}}{\overset{\cdot}{\sim}} \overset{-1}{\overset{\cdot}{\sim}} \overset{\operatorname{T}}{\overset{\cdot}{\sim}} \overset{\operatorname{BTT}^{-1}}{\overset{\cdot}{\sim}}) = \operatorname{ch}_{\overset{\cdot}{1}} [(\overset{\operatorname{T}^{-1}}{\overset{\cdot}{\sim}} \overset{\operatorname{T}^{-1}}{\overset{\cdot}{\sim}}) (\overset{\operatorname{T}^{-1}}{\overset{\operatorname{BT}}{\overset{\cdot}{\sim}}})] \quad \text{and then by}$ theorem 1, we get the corollary 1.

Corollary 2: Let r = p in corollary 1. Then, we get for any i, j = 1, 2, ..., p,

$$(\operatorname{ch}_{\operatorname{BC}})$$
 $(\operatorname{ch}_{\operatorname{p+i-j}}\operatorname{AC}^{-1}) \leq \operatorname{ch}_{\operatorname{i}} \operatorname{AB} \leq (\operatorname{ch}_{\operatorname{i}} \operatorname{BC})$ $(\operatorname{ch}_{\operatorname{i-j+l}} \operatorname{AC}^{-1})$

The above result was established by Anderson and Gupta [1] by using somewhat different methods under the condition of $\stackrel{A}{\sim}$ being p.s.d., but we have proved it for $\stackrel{A}{\sim}$ any sy. matrix.

Corollary 3: As a special case of corollary 2, we get for any i = 1, 2, ..., p

$$\begin{split} \max_{\mathbf{p}} & = (\operatorname{ch}_{\mathbf{p}} \operatorname{BC})(\operatorname{ch}_{\mathbf{i}} \operatorname{AC}^{-1}), \ (\operatorname{ch}_{\mathbf{i}} \operatorname{BC})(\operatorname{ch}_{\mathbf{p}} \operatorname{AC}^{-1})] \leq \operatorname{ch}_{\mathbf{i}}(\operatorname{AB}) \\ & \leq \min_{\mathbf{p}} \left[(\operatorname{ch}_{\mathbf{i}} \operatorname{BC})(\operatorname{ch}_{\mathbf{i}} \operatorname{AC}^{-1}), \ (\operatorname{ch}_{\mathbf{i}} \operatorname{BC})(\operatorname{ch}_{\mathbf{i}} \operatorname{AC}^{-1}) \right]. \end{split}$$

Theorem 2: Let A and B be any two sy. matrices of order p. Then for any i, j = 1, 2, ..., p,

$$\operatorname{ch}_{j \sim}^{\mathbb{B}} + \operatorname{ch}_{p+i-j \sim}^{\mathbb{A}} \leq \operatorname{ch}_{i} \left(\overset{\mathbb{A}}{\sim} + \overset{\mathbb{B}}{\sim} \right) \leq \operatorname{ch}_{j \sim}^{\mathbb{B}} + \operatorname{ch}_{i-j+1 \sim}^{\mathbb{A}}.$$

<u>Proof:</u> Since B is a sy. matrix of order p, there exists an orthogonal matrix Δ such that $B = \Delta D_{\omega} \Delta'$ where $D_{\omega} = \text{diag.}(\omega_1, \omega_2, \ldots, \omega_p)$ and $\omega_1 \geq \omega_2 \geq \ldots \geq \omega_p$ are the ch. roots of B. Moreover, by lemma 1, we have

$$ch_{\mathbf{i}}(A+B) = \underset{\mathbf{x}' \times \mathbf{x}}{\text{minimum}} \quad \underset{\mathbf{x}' \times \mathbf{x}}{\text{maximum}} \left[\left(\frac{\underline{\mathbf{x}'}(A+B)\underline{\mathbf{x}}}{\underline{\mathbf{x}'}\underline{\mathbf{x}}} \right) = \frac{\underline{\mathbf{x}'}A \underline{\mathbf{x}}}{\underline{\mathbf{x}'}\underline{\mathbf{x}}} + \frac{\underline{\mathbf{x}'}B \underline{\mathbf{x}}}{\underline{\mathbf{x}'}\underline{\mathbf{x}}} \right].$$

$$h = 1, 2, \dots, i-1$$

Let us write $\Delta' \underline{x} = \underline{y}$ and $\Delta' \alpha_h = \beta_h$ (h = 1, 2, ..., i-1). Then

(9)
$$\operatorname{ch}_{\mathbf{i}}(A+B) = \underset{h = 1, 2, \dots, i-1}{\operatorname{minimum}} \left[\frac{\underline{y}'(\underline{\lambda}'A\underline{\lambda})\underline{y}}{\underline{y}'\underline{y}} + \frac{\underline{y}'\underline{D}_{\omega}\underline{y}}{\underline{y}'\underline{y}} \right].$$

Now minimize over the sub-region given by

 $\begin{array}{l} \beta'_{h+i-j} = (0,\dots,0,\,c_h,\,0,\dots,0),\,c_h \quad \mbox{is nonzero finite and real, for} \\ r = 1,\,2,\,\dots,\,j-l,\,\mbox{and} \quad \beta'_h = (0,\dots,0,\,\beta_{j,h},\,\dots,\,\beta_{r,h}) \ \mbox{for } h = 1,2,\dots,i-j. \end{array}$ Then $\underline{y'} \, \begin{array}{l} \beta_{h+i-j} = 0 \ \ (h = 1,2,\dots,j-l) \ \mbox{give} \quad y_1 = y_2 = \dots = y_{j-l} = 0. \quad \mbox{Now} \end{array}$

let us write $\underline{Z} = (y_j, ..., y_r)$, $\underline{\delta}_h = (\beta_{j,h}, ..., \beta_{r,h})(h = 1,2,...,i-j)$, $\underline{D}_3 = \text{diag.}(\omega_j, \omega_{j+1}, ..., \omega_p)$ and \underline{A}_1 be the sub-matrix of \underline{A} , obtained by deleting first (j-1) rows and (j-1) columns of $(\underline{A}, \underline{A}, \underline{A})$. With this, it is clear that

$$\begin{array}{cccc}
ch_{\mathbf{i}}(A+B) & \leq & \underset{h}{\text{minimum}} & \underset{\underline{z}'\underline{\delta}_{h}=0}{\text{maximum}} & \left[\frac{\underline{z}' A_{\underline{z}} \underline{z}}{\underline{z}'\underline{z}} + \frac{\underline{z}' D_{\underline{z}} \underline{z}}{\underline{z}'\underline{z}} \right] \\
h & = 1, 2, \dots, \mathbf{i}_{\mathbf{j}}
\end{array}$$

$$\leq \underset{h = 1, 2, ..., i-j}{\operatorname{minimum}} \left[\frac{\underline{z}' \underline{A}_{1} \underline{z}}{\underline{z}' \underline{z}} + \omega_{j} \right] = \left(\operatorname{ch}_{i-j+1} \underline{A}_{1} \right) + \omega_{j}$$

That is, using lemma 2,

$$\operatorname{ch}_{\mathbf{i}}(A+B) \leq \operatorname{ch}_{\mathbf{j}} + \operatorname{ch}_{\mathbf{i}-\mathbf{j}+1} A$$

For the other part, $\operatorname{ch}_{\mathbf{j}}^{\mathbb{B}} = \operatorname{ch}_{\mathbf{j}}[(\underbrace{\mathbb{A}+\mathbb{B}}_{\sim}) + (-\mathbb{A})] \leq \operatorname{ch}_{\mathbf{i}}(\underbrace{\mathbb{A}+\mathbb{B}}_{\sim}) + \operatorname{ch}_{\mathbf{j}-\mathbf{i}+\mathbf{1}}(-\mathbb{A})$.

But $ch_{j-i+1}(-A) = -ch_{p+i-j} A$. Hence we get

$$\operatorname{ch}_{\mathbf{i}}(\overset{A+B}{\sim}) \geq \operatorname{ch}_{\mathbf{j}}\overset{B}{\sim} + \operatorname{ch}_{\mathbf{p+i-j}}\overset{A}{\sim}.$$

Thus, the theorem 2 is established.

Corollary 4: As a special case of theorem 2, we have for any i = 1, 2, ..., p

 $\max. \left[\operatorname{ch}_{\mathbf{i}} \overset{\mathtt{B}}{\rightleftharpoons} + \operatorname{ch}_{\mathbf{p}} \overset{\mathtt{A}}{\rightleftharpoons} , \operatorname{ch}_{\mathbf{p}} \overset{\mathtt{B}}{\rightleftharpoons} + \operatorname{ch}_{\mathbf{i}} \overset{\mathtt{A}}{\rightleftharpoons} \right] \leq \operatorname{ch}_{\mathbf{i}} \left(\overset{\mathtt{A}+\mathtt{B}}{\rightleftharpoons} \right) \leq \min. \left[\operatorname{ch}_{\mathbf{1}} \overset{\mathtt{B}+\mathtt{ch}}{\rightleftharpoons} \overset{\mathtt{A}}{\rightleftharpoons} , \operatorname{ch}_{\mathbf{i}} \overset{\mathtt{B}+\mathtt{ch}}{\rightleftharpoons} \overset{\mathtt{A}}{\rightleftharpoons} \right].$

The author thanks Professor S. N. Roy for his kind help.

REFERENCES

- [1] Anderson, T. W. and S. Das Gupta (1963), Some inequalities on characteristic roots of matrices, Biometrika, Vol. 50, pp. 522-524.
- [2] Bellman, (1960), <u>Introduction to Matrix Analysis</u>, McGraw Hill Book Co., New York.