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ABSTRACT

A tetrahedral graph is defined to be a graph G, whose vertices are

identified with the (;) unordered triplets on n symbols, such that vertices

are adjacent if and only if the corresponding triplets have two symbols in

cODmon. If n
2

(x) denotes the number of vertices "7, which are at distance

2 from x and A(G) denotes the adjacency matrix of G, then G has the following

properties: P1) the number of vertices is (;). P2) G is connected and

regular. P
3

) ~(x) = ~(n-3)(n-4) for all x in G. P4 ) the distinct eigen

values of A(G) are -3, 2n-9, n-7, 3(n-3). We show that, if n > 16, then

any graph G (with no loops and multiple edges) having the properties PI) - P4)

must be a tetrahedral graph. An alternative characterization of tetrahedral

graphs has been given by the authors (J. Comb. Theory, Vol 3, No 4, December

1967, 366-385).
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1. Introduction

We shall consider only finite undirected graphs without loops or multiple

edges. A tetrahedral graph with characteristic n is defined to be a graph

whose vertices are identified with the (;) unordered triplets on n symbols,

with two vertices adjacent if and only if their corresponding triplets have

two symbols in common. If d(X,y) denotes the distance between two vertices

x and y and b(x,y), the number of vertices adjacent to both x and y, then

it has been shown by Bose and Laskar [1] that for n > 16, the following

properties characterize the tetrahedral graph with characteristic n:

bl ) The number of vertices is (;).

b2 ) The graph is connected and regular of degree 3(n-3).

b
3

) If d(x,y) • 1, then b(x,y) = n-2.

b4 ) If d(x,y) = 2, then b(x,y) =4.

The adjacency matrix A(G) of a graph G is a square (0,1) matrix whose

rovs and columns correspond to the vertices of 0, and aij = 1 if and only if

i and j are adjacent. Let ~(x) denote the number of vertices y at distance

2 from x.

A tetrahedral graph G with characteristic n has the following properties:

Pl ) The number of vertices is (;}
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P2) G is connected and regular.

P3) ~(x) = ~(n-3)(n-4) for all x in G.

P4) The distinct eigenvalues of A(G) are -3, 2n-9, n-7, 3(n-3).

(Pl ), (P2 ), (P3 ) are obvious. (P4) is proved in paragraph 2. We go on

to show that (Pl ), (P2 ), (P
3

), (P4 ) characterize a tetrahedral graph with

characteristic n.

2. Determination of the eigenval)les of A(G).

Given v objects, a relation satisfying the following conditions is said

to be an association schl:me with m classes:

a) Any two objects are eigher 1st, 2nd, ••• or mth associates, the

relation of association being symmetrical.

b) Each object a has ni ith associates, the number ni being independent

of a.

c) If any two objects a and ~ are ith associates, then the number of

objects which are jth associates of €X, and kth associates of ~, is P~k and is

independent of the pair of i th associates a and~. The numbers

v, n. (i =1, 2, ••• , m) and P~k (i, j, k =1, 2, .•. , m) are the parameters
1 J

of the association scheme.

The concept of an association scheme was first introduced by J30se and

Shimamoto [3].

If we define

1 2 v

B. (b~)
:b
li

b1i b
li= = 1 21 vb2i b2i ... b2i

, i = 0, 1, ... , m,... .-.. ...
b1. b2 . ... bV

V1 V1 vi
where

b~ =1, if the objects a and ~ are ith associatesext
= 0, otherwise,
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association on the vertices of G is defined, such that two vertices are

1 m

P = (pi) = POk POk
k k 1 m

POk Plk
, k = 0, 1, ... , m,... ... ... ...

pl m
mk ... Pmk

m

B = I Ci Bi
i=O

P = t Ci '\
i=O

then it has been shown by Bose and Mesner [2J, that the matrices Pi'

i = 0, 1, ••• , m are linearly independent and combine in the same yay as the

and

I's under addition as well as multiplication. It was further shown that if

then B and r have the same distinct eigenvalues. If in particular we take

then it can be easily checked that G yields a three-class association scheme.

Co = 0, cl = 1, c2 = c
3

= ••• = cm = 0, it follows that the distinct eigen

values of li. are the same as those of Pl.

Consider a tetrahedral graph G with characteristic n. If a relation of

1st, 2nd, or 3rd associates if they are at distances 1, 2 or 3 respectively,

It may be pointed out that the matrix A(G) is the matrix Bl' and thus the

distinct eigenvalues of A(a) are given by those of the matrix

0 1 0 0

'I = 1 '2 3nl Pll Pll P11

0
1 2 p3

P12 P12 12

0
1 2 p3

P13 P13 13
i association scheme corresponding to G are easilyThe parameters Pjk of the

I
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Thus, we have the following lemma:

3. Some Preliminaries on Matrices.

3
Pll = 0,
3 _

P12 - 9 ,

Pi, = 3(n-6).

t
v i!i (x-Gi )

t
]I (d-<J

i
)

i-l

p(x) =

1 2
Pll = n-2, Pll = 4,

1 2P12 =2(n-4), P12 =2(1'1-4),
1 2

P13 = 0 , P13 = 1'1-5,

-3, 2n-9, n-7, 3(1'1-3) •

calculated. They are given by

-3, 2n-9, n-7, 3(1'1-3).

Substituting these values in the matrixP
l

, the eigenvalues are easily

calculated. They are found to be

Lenma 2.1. If G is a tetrahedral graph with characteristic n and if A(G) is

the adjacency matrix of G, then the distinct eigenvalues of A(G) are

of degree d, and the other distinct eigenvalues are al , (12' ••• , (It' then

Before stating the next lamma, we need the concept of the polynomial of

a graph due to Hoffman [4). Let J be the matrix all of whose entries are

unity. Then for any graph G with adjacency matrix A =A(G), there exists

a polynomial p(x) such that peA) = J if and only if G is regular and connected.

polynomial of G, and is calculated as follows: if G has v vertices, regular

The unique polynomial of least degree satisfying this equation is called the

Consider a regular, connected graph H (with no loops and multiple edges)

on v =(;) vertices such that the adjacency matrix A =A(H) has the distinct

(2.1)

I
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eigenvalues -3, 2n-9, n-7, 3(n-3).

Lemma 3.1. The matrix A satisfies the equation

(3.2) A3 - (3n-19) A2 + (2n2 - 32n + 111) A + (6n2 - 69n + 189) I • 36J,

where J is a v X v matrix all of whose entries are i, and I is the v X v

identity matrix.

Proof: It follows immediately by calculating the polynomial of the graph H

as given in (3.1).

Lemma 3.2. For any two vertices x, y in H, d(X,7) S 3.

Proof: If in (3.2) we set Aij = 0, A~j =0, then A~j = 36, but this implies

that d(i,j) S 3 for all vertices i,j in H.

Lenma 3.3. Consider the matrix

B = t[A2-(n-2)A-3(n-3)I].

Let n2(i) denote the number of vertices j, such that d(i,j) = 2, and n,(i)

denote the number of vertices k, such that d(i,k) =3. If ~(i) = i(n-3)(n-4),

for all vertices i in H, then

i) B is a (0,1) matrix

ii) A(x,y) =n-2, for all vertices x,y in H, such that d(x,y) = 1

iii) A(x,y) =4, for all vertices x,y in H, such that d(x,y) =2.

Proof: Since H is regular and 3(n-3) i8 the dominant eigenvalue of A, it

follows H is regular of degree ~ = 3(n-3).

Divide the set of vertices of H, with respect to a particular vertex

i into four subsets SO' Sl' S2' S3 as follows:



Hence it follows from (3.3), (3.5), (3.6), (3.7) that

A' jJ. t

2
I: 9(n-3) •

2 2
Aij = (A J)ii

=3(n-3) •

6

=3 (n-2) (n-3).

3 = ~
Aii L

tel

v

I
j=l

80 : i

81: jl' j2' ·.. , jt' jn ' such that d(i,jt) =1, t =1, 2, •.. , nl1
82 : kl , k2, ·.. , k , k (.), such that d(i,ks ) =2, s =1,2, ... ,n2(i)s n2 J.

8
3

: J l , J2, ·.., Jr , I n (i)' such that d(i,Jr ) = 3, r = 1,2, ..• ,~(i)
3

(3.4)

Thus the vertices in 8t are the tth associates of the vertex L fhe

following relations can be deducted easily from (3.2) by noting that AJ = JA.

(3.5)

=3 (n-3)(n2+7n-37) •

AlsO, since At J = B(n-3) }tJ , we get

Also

I
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B = i-[A2-(n-2)A-3(n-3)I], we get(3.10)

v
\ 2 3L bij = 2(n-3 }(n-4).

j=l

= 6(n-3) (n-4).

Consider

we first show that

Xi =n2(i) - i(n-3)(n-4).

Since

But

Substituting values from (3.3), (3.4), (3.6), in (3.11) we get

B~i = i(n-3)(n-4).

Hence

I

I.
I
I
I
I
I
I
I
I·

I
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Also from (3.10)

n
2
(i) n2(i)

I bilts = i I A~s
s=l s=l

It follows from (3.8) that

~(i)

I bilt = ~(n-3)(n-4).
s

8=1

Substituting values from (3.12), (3.13) in (3.9) we get

Xi = ~(i) - ~(n-3)(n-4).

lfoy if n2 (i) =~(n-3)(n-4) for all i in H, then Xi = 0, for all i in H.

Then, it follows from (3.9) that B is a (0,1) atrix which proves i).

To prove ii), we note that if Aij = 1, then from (3.10), (3.3) and
t

(3.6) it follows
nlI bijt = o.
t=l

But since bij = 0 or 1, this implies bij = 0, and hence from (3.1O) it
2 t

follows that Aij = n-2.

2!fo prove iii) we note that if Aij = 0, Aij r0 then bij r0 and hence

2Aij =4.

4. Theorem. If H is a graph satisfying the following properties:

Pl ) The number of vertices is (;).

P2) H is connected and regular.

P3) n2(x) = i(n-3 )(n-4) for all x in H.

P4) The distinct eigenvalues of A(H) are -3, 2n-9, n-7, 3(n-3).

then, for n > 16, H is tetrahedral.

8
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Proof: From lemmas (3.1) - (3.3) and the hypothesis, H clearly satisfies

the following conditions:

~) The number of vertices in (;)

~) H is connected and regular of degree 3(n-3)

~) A(x,y) = n-2, for d(x,y) = 1

&4) A(x,y) =4, for d(x,y) = 2.

Hence if n > 16, H is tetrahecral [1].

Bote: It is conjectured that the property P
3

) of the theorem is implied by

the other properties Pl ), P2 ), P4)'
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