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PREDICTION INTERVALS FOR LOG-LINEAR REGRESSION

Alastair J. Scott* and Michael J. Symons

The University of North Carolina at Chapel Hill

In situations where the log transfonnation is used to make the assumptions

of the ordinary linear regression model more reasonable, interval estimates for

future observations are often desired in the scale of the original measurements.

Connnon practice is to transfer the usual equal tail interval in the transfonned

scale back to the original scale. Conditions under which this procedure gives

reasonably.short intervals as compared with the shortest possible interval h~v­

ing the s&~e ~ontent are derived, and simple procedures that give reasonably

short intervals· are suggested when it is not satisfactory.

1. Introduction.

Suppose that we have a set of observations on a response variable z with

corresponding measurements on p independent variables xl, ••• ,xp and that the

transfonned variable y = log z satisfies the assumptions of the usual linear

regression model to an adequate degree of approximation. Standard regression

techniques will produce estimates and predictions expressed in the transfonned

scale. Sometimes these new units will have a genuine physical meaning and it

is preferable to work with them, but more often estimates and predictions

expressed in the scale of the original measurements are desired. Most atten­

tion has been paid to estimation, particularly of the expected value of the

variable" z. Finney (1951), Aitchison and Brown (1957), Heien (1968),

*This work was done while on leave from the London School of Economics
during 1969-1979.
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that give reasonable results when these conditions are not met. In particular,

the shorter of the usual equal-tail area interVal and one-sided interval is

always fairly good.

(2.1)

Then y = X'A
~o~

of 1.1 = x 's, the value of the regression
~o~

r = XI~ + ::

the upper tail larger. In the following sections we compare the commonly-used

equal tail interval with the shortest possible interval and find conditions

under which the inflation in length is small. We also suggest simple alternatives

values of new observations on the response variable z for given xl, ..• ,xp '

Both problems are. somewhat simpler than estimating the expected value of z.

For example, standard techniques give I-a prediction intervals with equal upper

and lower tail areas for future values of y = log z, and common practice of

scale of the original measurements by decreasing the lower tail area and making

simply transforming the end-points of this interval gives a valid I-a predic­

tion interval for values of z. However, we can obtain shorter intervals in the

problem. For many purposes the median of z is more useful than the mean since

the log-nonnal distribution is markedly skewed. This paper discusses interval

estimates for the median of z and also deals with the problem of predicting

Goldberger (1968), Land (1969), and Bradu and ~~dlak (1970) all discuss this

where e:l, ••• ,e: are independent normal random variables with mean zero and con-n .

stant variance 0
2. Let S= (X'X)-ly be the least-squares estimate of S and- - ,..,

2 A ..... 2
s = (y-X'S)'(y-X'S)/(n-p) be the usual unbiased estimate of 0 •--- ---

2. Preliminary Discussion

Suppose that there are n measurements (Zi'Xll, ..• ,Xpl), •.. ,(zn'Xln, .•. ,Xpn)'

Then ify. = log z. (i=l, ..• ,n) we have
J. J.

is the minimum variance unbiased estimate

I

'-I
I
I
I
I
I
I

•
I
I
I
I
I
I
I,e
I



3

'This is a genuine I-a confidence interval for' z since z is a monotonetunction

with lower tail area zero and upper tail area a will be shorter than II if S is

line at ~=::So' and confidence intervals for l-l can be constl1.!cted from the relation

(2.2)

(2.3)

(2.5)

(See Draper and Smith (l968) , pp. 24 and 122.)

-y -y ..T - t(n-p)

y-ll (----L--'---:_l"-.-k - t n -p) ,
s [~~(X 'X) ~o] 2

"12 = [0, exp{y+St(l-a, n-p)}]

Similarly, the direct·transform of the usual interval for ll=X'S
-0-

Similarly, standard techniques lead to confidence intervals for the value of a

future observation on the transformed variable y, or more generally for the value
-

of yq the mean of q future observations on y at x=x , based on the relation
- -0

" "II = [exp{y-St(l-~, n-p)}, exp{y+St(l-~, n-p)}]. (2.4)

2 2 -1 -1where S = s (q +x'(X'X) x).
. -0 -0

The usual prediction interval for Yq, Y.!. St(l-~a, n-p)., with equal upper and

lower tail areas is the shortest I-a confidence interval for y based on (2.3).
q

If the scale of the original measurements is of primary importance then we

are interested in prediction intervals for values of the original variable z

rather than the transformed variable y = log z. The usual way of obtaining a

confidence interval for z is to transform the equal tail area interval for y,

producing

the one sided interval

of y, but different combinations of upper and lower tail areas may lead to I-a

confidence intervals for z that are shorter. For example the extreme case of

large enough.
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gives a valid confidence interval for exjJht}, the median (but not the mean) of

observations on z at x=x. Again different combinations of upper and lower tail
- -0

areas can produce shorter intervals in the 'scale of the original measurements.

All the discussion so far applies equally to confidence intervals in the

ordinary frequency sense or to Bayes confidence intervals ''lith conventional

In theory, the problem of finding the shortest interval having specified

content for a quantity e with a continuous density p(S) is fairly simple. If L

and U are the lower and upper limits of the shortest interval, then it is easy

to show that L· and U must satisfy

(2.6)peL) = p(U)

representations of vague prior knowledge. (See Lindley (1965).) Both types of

intervals for]l or yare based on (2.2) and (2.3) respectively, and are com-
q

pletely equivalent for prespecified upper and lower tail areas. In the next

section we look at the combinations of tail areas that give the shortest possible

intervals for values of z or for the median exP{]l}, and here it is a little
A

easier to work in the Bayesian framework since y and S are then regarded as

fixed. Most of the results are innnediately valid for either system of inference

and the implications for confidence intervals are pointed out throughout.

In the Bayesian framework the median exp{]l} is a random variable as well as

future values of z and it is convenient. to consider both cases together by

defining e = exp{y }, where y is the mean q future observations on the transformedq q

variable y as before. When q=l, e is the value of a single observation on z, and

when q=oo,e is the median exp{]l} since yoo=]l. Intermediate values of q correspond

to the geometric mean of future values of z which is sometimes of interest, parti­

cularily in economic applications.
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to determine which of the solutions is the. shortest.

Otherwise there may be several solutions and additional comparisons are necessary

(3.4)

(2.7)

(3.3)

(3.2)

u
Jp(8)d8 = I-a
L

A 2 2 A 2 2
[log L-(y-S)] = [log U-(y-S )] •

. A 2 2
1 L+(log L-y) = log U+(log u-y)

og 2S2 2S2

with

tion of (2.6) and (2.7) is lIDique. (See Lindley (1965) or Box and Tiao (1965).)

3. Known Variance

If 62 is known, log 8 is nonnally distributed with mean; and variance

S2 = o2(q-l+x'(X'X)-lx ) so that e has a log-nonnal distribution with density
-0 -0

lIDless either L or U are bOlIDdary points of the region where the density is

positive. If p(8) is lIDimodal and is not constant over any interval the solu-

p(8) = 1 exp{_~(log 8-y)2} (3.1)
IZTIS8 S

for 8>0. The distribution is unimodal with mode exp{;-S2}, median exp{;}, and

mean exp{y+~S2}. (Aichison and Brown (1957)) In this case equation (2.6)

reduces to

which is equivalent to

Thus the shortest interval estimate for 8 with probability content I-a has the

following simple fonn:
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where C is chosen so that the content is I-a. This. interval is the transfonna

of a synunetric interval for y about ;-s?, the log mode. The usual equal tail

area interval is the transfonn of a synnnetric interval about y, the log median.

A comparison of the relative lengths is included as a special case of the

unknown variance situation with infinite degrees of freedom in the next section.

. See Figure 1. Briefly, the shortest interval is approximately equal to the equal

tail area interval for small S, and approaches. the corresponding one-sided inter­

val as S becomes large.

In this case the Bayesian and frequentist interval estimates coincide, since

the shortest interval depends only on SandS is known when 0
2 is specified a priori.

4. Unknown Variance·

When 0
2 is not known (log 8-;)/S has a t-distribution with k=n-p degrees

of freedom and it seems natural to call the resulting distribution of 8 the

log-t distribution by analogy with the normal case .. The density is given by

(4.1)

for 8>0, which increases without bound as 8 approaches zero.

Two cases need to be distinguished. If S2> (k+l) 2/4k , p(8) decreases

monotonically as e increases. As a consequence the shortest interval for 8 is
. A

always one-sided with lower limit L=O and upper limit U = exp{y~St(l-a,k)}.

If S2< (k+l)2/4k , p(8) decreases to a relative minimum at

~ j
!.:

A k+l 4ks2 2
log 8 = y- --- 1+ 1- ,

2 (k+l) 2
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h. J.·eases to a relcltive maximum at

log 8

and then decreases steadily as 8. increases further. The distribution is not

. unimodal and there may be up to three solutions to equations (Z.6) and (Z.7)

that need to be considered in addition to the one-sided interval discussed

above. The other solutions cannot be expressed in a simple fonn but it is not

difficult to compute them numerically. This "Was done for several values of Q'.

and the lengths were compared to find the shortest. Figure 1 illustrates the

general situation with a=0.05.· It shows the lower tail area of the shortest

interval as a function of the standard deviation for various degrees of freedom

of 52.. Notice that with the degrees of freedom specified the shortest interval

depends only on S. It has approximately equal tail areas for small S and ap­

proaches a one sided interval with no lower tail area as S increases. The value

of S at which the one sided interval becomes a useful approximation to the

shortest interval is smaller when ;:"(ere are fewer degrees of ~reedom. The shift

of the shortest interval to one with a lower tail area l~ss than ~ is consistent

with the results of Bradu and Mtmdlak (1970), who find a fractional multiplier
. "

of exp{y} is reqUired to produce an unbiased estircc;te of 8.

. [Insert Figure 1,]

A comparison of the lengths of the equal tail area interval and one tail

interval with that of the shortest interval showed that with given degrees of

freedom the inflation corresponding to the interval 11 (Z.4) is a monotone

increasing function of S; the inflation with I Z (Z.5) is a monotone decreasing
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Table 2

Table 1

a 0.01 0.05 0.10 0.20

"exp{y}+C ],
a

"[exp{y}-Ca ,

Percentage Degrees of Freedom
Inflation 1 2 3 5 10 00

10% 0.05 0.17 0.24 0.32 0.39 0.46
25% 0.06 0.25 0.38 0.52 0.65 0.79
50% 0.09 0.34 0.53 0.77 1.00 1.32

Maximum Value of S for Which the Equal Tail Interval
Has at Most a Specified Inflation in Length over

the Shortest Interval at Selected Degrees of Freedom.

Maximum Inflation for the Rule: Choose the Shorter of II and 12.

Maximum ll~ 12% 13% 16%Inflation 0

in 10%, 25%, or 50% inflation in length.of the shortest interval are described

in Table 1.

function of S. The conditions lUlder which the usual.equal tail mterval results

This suggests a very simple rule: Choose the shorter of \ and 12. No

special'tables or graphs are required for this rule and it perfbnns well for any

value of S. For example with a=0.05, the shorter of II and 12 is no more than

12% longer than the shortest possible interval. The situation is much the same

for intervals of other content, as can be seen in Table 2 which shows the worst

inflation compared to the length of the shortest interval for "a few values of a.

....
An alternative rule i:; to choose a syrrnnetric interval about exp{y} in the original

scale; namely,
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where C is choosen so that the interval content is I-a. This has some
a

intuitive appeal and performs almost as well as the shorter of II and I Z rule.

If S is large, it becomes the one sided interval IZ' but for smaller values of

S it is similar to II. However, this synnnetric interval cannot be calculated

directly and an iterative procedure is needed to find the end-points unless

special tables or graphs are constructed.

The choice of interval estimates discussed in this section depends upon

the sample quantity sZ This poses no problem for a Bayesian, but the resulting

interval does not have exact I-a confidence in the ordinary frequency sense.

Strictly speaking a frequentist should prespecify the lower tail area for his

interval and not allow it to depend on the sample outcome. The infonnation pro­

vided by Figure 1 and Tables 1 and 2 would still be useful in choosing a lower

tail area if there were same prior knowledge about the magnitude of oZ. Since

the two points of view coincide when oZ is specified, it would be surprising if

the approaches differ substantially even with only a few degrees of freedom.

5. Example

Table 3 gives values of the bacterial count z and the concentration of

free chlorine x obtained from a routine su~v8illance of bacterial levels in

. swinming pools. We are grateful to Roy A. Paul (1970) for supplying the data.

Although several other factors such as the nurnber'of swinmers, the size of the

pool, and the acidity of the water affect the bacterial level, it was hoped that

a reasonable prediction of the level could be based on the chlorine concentration

alone. For small concentrations the assUlllption that y, the natural logarithm

of the bacterial count, was distributed about the line a+SX with constant

variance seemed to be a good approximation, although there may be a preference

for us.ing the inverse concentration as the independent variable.
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[Insert Figure 2.]

Figure 2 shows the scatter of observations about the fitted line:

y = 2.933-8.230x. The estimated variance was s2=1.749 and the value of S for a

new observation at Xo is

This varied from 1.336 to 1.402 for chlorine c0ncentrations in the range from

0.00 mg/l to 0.50 mg/l

[Insert Figure 3.]

Figure 3 shows the 95% equal tail intervals 11 and 95% one tail intervals

12 as a function of the chlorine concentration superimposed on a plot of the

original data. For example, the interval estimate 11 of a bacterial count at

a chlorine concentration of O.lmg/l is (0.57,119.98), a 54.9% inflation in length

of the shortest interval which is essentially 12, [0, 77.08). Since the lower

limits of the intervals 11 are close to zero ~"shown in Figure 3, the interval

11 is roughly 50% longer than 12 at all chlorine concentrations from 0.00 mg/l

to 0.50 mg/l.

The shortest interval estimate of the median using these data is interesting.

The interval estimates of the future observations were markedly one sided, but

for the median the equal tail" interval does quite well. The value of S at Xo is

~
- -j~1 (x-xo)

S = s n + - 2
1: (Xi -x)

and at Xo = 0.1 mg/l, S = 0.357. Although the shortest interval has a lower

tail area of about 0.D75 as shown in Figure 1, the inflation of the two tail
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interval is less than 10%, in fact only 6.3%. Similar results hold for other

values of Xo in the range of 0.00 mg/l to 0.50 mg/l •.

Table 3

Paul's Data: Bacterial Counts in Swinnning Pools at
Various Chlorine Concentrations.

z = Bacterial count in number of bacteria per millimeter
x = Concentration of free chlorine in milligrams per liter

z x z x z x z x

12.0 0.02 150.0 0.00 0.5 0.17 49.0 0.07
3.3 0.01 96.0 0.00 1.0 0.15 20.0 0.15
2.9 0.07 86.0 0.00 5.1 0.10 1.4 0.29
1.5 0.23 32.0 0.01 0.4 0.26 2.9 0.11
4.5 0.16 2.4 0.24 7.8 0.19 1.8 0.25

35.0 0.09 5.9 0.19 0.9 G.09 8.3 0.13
5.1 0.05 21.0 0.01 1.9 0.17 212 0.08

19.0 0.01 44.0 0.02 0.7 0.36 5.6 0.00
84.0 0.01 4.4 0.07 0.2* 0.43 0.2* 0.14
93.0 0.01 0.6 0.17 1.0 0.55 3.8 0.08
98.0 0.01 0.9 0.39 0.2 0.51 2.8 0.09
18.0 0.01 0.5 0.49 17.0 0.25 63.0 0,15
11.0 0.04 2.4 0.35 6.0 0.21 39.0 0.09
43.0 0.00 3.5 0.41 5.1 0.00 20.0 .0.03.

*These two observations were originally zero. They were
Winsorized and replaced by the smallest observed value
because of measurement difficulties with small values.
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FIGURE 3 -- Distribution of Paul's Data with 95% Prediction
Intervals 11 and 12 Superimposed
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