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ABSTRACT

The density estimator of Yamato (1971),

well as a closely related one

-1 n 1
f*(x) = n L h: K(x-X.)/h.), as
n j=1 J J J

ft(x) =n-1h-~ r h:~K((X-X.)/h.) are considered.
n n j=l J J J

Expressions for asymptotic bias, and variance are developed and weak consistency is

shown. Using the almost sure invariance principle, laws of the iterated logarithm

are developed. Finally application of these results to sequential estimation pro-

cedures are made.
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I. Introduction. Let Xl ,X2, ... be a sequence of i.i.d. observations drawn accor

ding to a probability density~ f. Rosenblatt (1956) introduced the kernel estima-

tor of the density, f(x),

,. 1 n
f n (x) = nh r

n j=l [5JK h '
n

and, in a now classic paper, Parzen (1962) developed many of the important proper-

ties of these estimators. A closely related estimator

1 n 1 [X-XjJf n* (x) = - 2 -h K--
n . l' h.

J= J J

was introduced by Yamato (1971). This latter estimator has tho very useful property

that it can be calculated recursively, i.e.

[
X-X Jn-l 1 nf*(x) =--- f* (x) + --- K-----n n n-l nh hn n

This property is particularly useful for fairly large sample sizes, since addition
A

of a few extra observations means fn(x) must be entirely re-computed - a tedious

chore even with a computer.

In this paper we shall explore some properties of

estimator, f~, defined by

f* as well as a related
n

=n~ jt ~ K[X~:jJ .
This latter estimator can also be recursively formulated;

ih
f
n
t (x) - n-l . n-l ff· (x)

- nih n-l
.j1

1 [x-XnJ+--K--
nh hn n

In addition, we will give a law of the iterated logarithm for ft, a rate of con
n

vergence for

mators.

f* and some properties of both when used as sequential density esti
n



(2)

2
Throughout this paper, we shall deal with univariate estimators. The extension

to the multivariate case is straightforward. We shall assume throughout that

K is syn~etric about 0,

K(u) > 0 ,

(1) J:", K(u)du < 00

sup K(u) < '" ,
u

luIK(u) + 0 as u + too ,

and that {hn} is a sequence of numbers such that

h + 0n

nh + 00 •
n

Other assumptions on K and {hn} will be made as needed.

2. Asymptotic Bias, Variance and Consistency: Throughout this paper, it will be

convenient to deal with the sum

.l.

n~ f~(x)
n 1 [x-x.]= L _K_J

j=l £ h j
J

We recall a useful lemma from Parzen (1962).

Lemma 1: Suppose K(u) is a Borel function satisfying (1). Let g(u) satisfy

J:oo Ig(u)ldu < 00 ,

and let {hn} satisfy (2). Then

~n f:", K(~J g(x-u)du + g(x) J:oo K(u)du as n+oo.



Theorem 1:

density,

(a) Let K and {h} satisfy (1) and (2).
11

nhn var f~(x) + f(x) f~~ K2 (u)du .

3

If f is a bounded

(b) Let us suppose K has Fourier transform K* so that K*(u) =

(00 e- iuy K(y)dy
1-00

and that f(r) (x)

Suppose further that for some r, lim {[l-K*(u)]/lul r } is finite
u~

exists. Then

n
IE f* (x) - f(x) I ~ 0 (1:. L h

r
)

n n . 1 n
J=

(c) Under the assumptions of (b), and choosing hn=bn7Y ,

Ef'j- (x) f(x)n +-y-.
1-2

Proof: Now

h ft(x) =nhn n var n n [
1 n 1 [ 2[X-X.] [ (X-X.)]2 ] ]-I- EK~-EK-J2h . 1 h. h. h.

n J= J J Jn

=* .I [JOO

~. K2(X~~lf(U)dU - ~. [IOO

K(X~~)f(U)dU]2 ]
J=1 _00 J J) J _00 J

But making a simple change of variable

It follows that the Ces~ro sum

1:. r h.(Joo K(U)f(X..h.U)dU)2 + 0 .
n j=l J -00 J

Similarly,



[ 1 2(*-UJ Joo 1 2 (U )"h."" K h. f(u)du = "h."" K i1:"" f(x-·u)du .
_00 J J _00 J J

Since K is a bounded function, [00 K2Cu)du < 00. By Lemma I,

[~ ~j K
2

[Xj;;Jf(U)dU + f(x) [~ K
2

(uJdu ,

hence the Ces~ro sum,

lim~.I ~. [ K2(xh~)f(U)dU= f(x) J<X>__ K
2

(u)du.
n-+co J=l J -co J ~

The conclusion of (a) follows. Parzen (1962) shows

Joo ~ K(Xh
Y) f(y)dy-f(x)

-co n n ~ k f(r) (x)
hr r
n

where k = lim {[l-K*(u)]/lulrl. Clearly, there exists cr such that
r u-+o

I [ ~ K(Xh
Y) f(y)dy - f(x) I ::; crh~ for all n.

-co n n

But

IE f~(x) - f(x) I ::;.!. I I r ~. K(xh~)f(Y)dY - f(X)!
n j=l )_00 J J

4

To observe the result for

n
::;.!. I

n . 1J=

tf (x),
n

rc h .r n

- 1 c I h:+~::; E fT(x) ::;.!. I )~ f(x) +
Ii1 n r j=l J n n j=l v hn

n

F
Multiplying by l"hJ ,

n

1 n fh."- I 1_1. f(x)
n . 1 vhJ= n

dividing by n and summing yields



Under the assumptions of (c),
n1 ~ .-y/2

- -/.. J
1 n k· n. 1_ -l. _ J=
n .L

1
h - -y!2

J= n n

Using integral approximations,

1 r /5.+ 1
n . 1!~ l-y/2

J= n

Similarly, using integral approximations

5

1 n
- L
Ihi1 j=ln

Thus

h:+~ + 0 .
J

lim E ft (x)
nn-+a>

= f(x)
1-y!Z o

Thus for h =bn-Y the Yamato estimator has the same
n '

Using the integral approximation, it can be shown that if h =bn-Y, then
n

!. r h:: = 0(n- YI) = 0(hn
r ) •

n . 1 JJ=

rate of convergence for the bias term as the Parzen estimator. flowever this need

not always be the case. For example, if r=l and h =b(10g n), then
n n

n
!. L h. = 0(10g log n 0 log n) = O(log log n • h). Thus the Yamato estimator may
n j=l J n n

have worse bias properties than the standard kernel estimators.

3. An Almost Sure Invariance Principle. Strassen (1964, 1965) introduced the idea

of an almost sure invariance principle an r his notion has been developed by Jain,

Jogdeo and Stout (1975). Briefly put, we will use the almost sure invariance prin-

ciple by showing that the sum,



random variables with finite second moments. Let

n 2
V = L E[Y. L SO=O=VO'

n j=l J

Theorem 2: For a fixed o.~O, assume

6

it ~ HX~:jJ -E K[X~:jJ]
J

is with probability one close to Brownian motion in a sense made precise below.

The asymptotic fluctuation behavior of Brownian motion has been investigated and by

use of the a1n~st sure invariance principle, we may transfer results about Brownian

motion to our density estimates.

We first shall reproduce some re1e.ant results from Jain, Jogdeo and Stout

(1975). Theorem 2 represents a less general version of Theorems 3.2 and 5.1 of

Jain, Jogdeo and Stout (1975). Let Y1, ... ,Yn , ... be a sequence of zero mean
n

S = L Y. and
n j=l J

(3)

and

(4)

V + 00
n

< 00 a.s.

Let S be a random function defined on [0,(0) obtained by setting S(t)=Sn for

t€[V,V 1)' Then, redefining {Set), t~O}, if necessary, on a new probability
n n+

space, there exists a Brownian motion s such that

(5) IS(t) - ~(t) I ,. o(tJ.2(10gzt) 0-0.)/2) a.s.

Here log2t = log log t.

In particular, if (4) holds with o.=Z and ~>O is a nondecreasing function,

then



7

P[S > V~$(V ) i.o.] = 0 or 1n n n

according as

n 1
= h E I n . 1 h h.

J= n J

= h var nft(x) .n n

f: ~(~) exp(-~2(t)/2)dt < 00 or = 00 •

identify Yj = ~ HX~;i) -E K[X~;j)]. Thus we have,

J

V
n

= I E Y: = E I .L ,- K(X-Xj ) _ E K(X-Xj ) J2
. 1 J • 1 h. h. h.
J= J= J - J J

[ K(~) - EK(X~~jJ ] 2
J J

Let us

But under the assumptions of Theorem 1

so that
V
n-=
n

nh var ft(x) ~ f(x)n n
2

K (u)du ,

Thus for 8>0 and for n suffi-

ciently large,

Let f satisfy the

diverges to 00,

{hn} satisfy (2).

2 (1l+1)log n (10g2n)
(6)

Theorem 3: (a) Let K satisfy (1) and

conditions of Theorem 1. If in addition,
n~

then (5) holds for 5n defined arL 'Ie.

(b) In pa~ticu1ar, if

ithn diverges to 00, then



P[S > ~ (v ) i.o.] = a or 1n n n

according as

(c) For ct~O

8

(d) For ct>l,

[

ft(X.)_Eft(X) ]
I " P n n1m -- :;; w =
n-+<x> "r';var f (x)

n

Proof: Consider first

I

[y2> Vk ]
k 1 V (1 V )2(ct+1)og k og2 k

Now

where c* is some constant. Thus

I

[y2> Vk ]
k 1 v (1 V )2(ct+l)og ~k og2 k

But



9

Yk2 ~ c* k
log k(10g

2
k)2(a+1)

if and only if

[ K('~:kJ (X-X) J2 ~ c*
hkk

- E K h
k

k
log k(10g

2
k)2(a+l) .

Since K is bounded and (6) holds,

[[ K[\~J -E K[X~~J ] ~ c*
hkk ]log k(10g2k)2(a+l)

is an impossible event for k sufficiently large. Thus _

a.s.

= 0 for k sufficiently large. It follows that .-

Part (b) is immediate.Hence the conclusion of (a) holds.

(5) by (2 log2 t 0 t)~,

I Set) ~(t) I
(2QIOg2tot)~ - (2.l0gzt.t)¥

To see part (c), divide

o(t"'(logzt) 12")
~ ------,-

(2.10g2t.t)~

= O((10g2t )-a/2)

But ~(t) ~. + 1 a.s. as t~, hence for a~O.
(2 olog2t otf2

Thus

a.s. as t~.

S
n

1/

(log2non)'2
-----k..-+ 1 a.s. as n~.

(log2Vn oVn) 2
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But

Hence

(7) Sn k + (2f(x) J~ K2(U)du)~ a.s. as n+oo.
(log2non) "2 _~,

Finally noting that n~ (fT(x) - E ft(x)) = S , we haven n n n

Hence part (c). For part (d), we observe that since ~(t) is Brownian motion

~(t)/It is normal mean zero variance l(n(O,I)). But

I-a

IS (t) - ~ (t) I ::; a( (10gzt)2) a. S .
It It

For a>l,

Set) is asymptotically n(O,I).
It

n t tI Y. = nih (f (x)-E f (x))
j=l J n D n

Letting t=V
n

~5 asymptotically n(O,I).

But

Sn
is asymptotically n(O,I).

IY
n

2 ftC ,;- tV = n h var x) =var nvn f (x). Also Sn =n n n n n

ft (x)-E ft (x)
n n

';var l (x)
n

~lliile we know the exact order of f~(x) - E f~(x), the fact that

o

is a

biased estimator and the fact that we do not have any rate on the bias term limits

"rthe usefulness of fn' Of course, y is a parameter of hn and hence known to

us. We could therefore consider (l-Y)f~(X) which would be asymptotically unbiased.
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Combining this';,result with Theorem: Lpart (a) and Theorem 3 part (c) yields a weakly

and a strongly consistent estimator respectively.

Results for f~ can be translated to results for f~ by the next two very

useful lemmas. These were suggested by the Toeplitz Lemma and the Kronecker Lemma.

See Lo~ve (1963).

Lemma 2: Let b + 00,
n

a.=b.-b. l' j~2 with
J ) )-

c + 00 and
n

al =b
1

, then

s be sequences such that
n n-1
-b

l
'\ a.s. -+ s.c J.. J J

n n J=l

s Ie -+ s.n n Let

Let e>O. There is N such that n>N impliese e

5

s-e ~ -E..~ s+e.cn

a. (5+e) •
J

1 n-1
+ b I

n j=N +1
e

a.s.
J J

N
1 e

b C .L
n n )=1

a. (s-e)
J.

Then

n
b = ;'I a ..n j=l J

n-1
5' =~ I a.s ..
n nCn j=l J J

N
e n-1b\ I a.s. + ~ I

n n j=l J J n j=N +1
e

Let

Proof: Note that

Taking lim inf and lim sup,

s-e ~ lim inf 5' ~ lim sup s' ~ 5+8.
n n

o

Lemma 3:
1 n

If -- I YJ' -+ s
C . 1n J=

and b t 00, then
n

n
L y., sO=O

j=l J

1 n
-b- L b.y.

C • 1 J Jn n J=

Proof: Let and a.=b.-b. 1 with a1=b1 ·
J J J-

1 n
=~ L b.(s.-s·_l)

n n j=l J J J
s n-1

= -E.. - _1_ '\ (b . - b. 1) 5 .
c b C • [,1 J J - Jn n n J=
s 1 n-l

= -E.. - -- L a.s ..
C b C . 1 J Jn n n J=

Then



1Z
1 n

Using Lemma 2, be.I bJ.y
J
. -+- s-s = O. 0

n n J=l

Theorem 4: Let K satisfy (1) and {hn} satisfy (2). Let f satisfy the conditions of
nh

Thcore~ 1. If in addition, n 2 diverges to 00, then

[

nh]~ log n (logzn)

10g:n (f;(x) - E f;(x)) -+- 0 a.s. as n+oo.

rloreover if the conditions of Theorem 1 part (b) hold and h =bn -Y with
n

then

(
l-y )~

~og2n (f;(x) - f(x)) -+- 0 a.s. as n+oo.

Proof: We observe that

>_1_Y-2r+l ,

n~ (f;(x) - E f;(x)) = I ~ [K(~) -EK(Xh-~jJ ] .
j=l hj J J

Identify en = (n lOgzn)"', bn = ;" Yn = ;, [K(X~:nJ - E K(X~:nJ ] in Lemma
n n

3. The result follows from (7) and Lemma 3.

-yrNotice that E f~(x) - f(x) = O(n ), hence,

(~l-y )~ IE f* (x) _ f(x) I :s; 0[(n
1
-: (zr+l))~] .

og2n) n og2n )

Since >_1_
y-Zr+l' 1-y(2r+l)s8, so that

(n1-Y)~ E
logzn I - f~(x) - f(x) I -+- 0 as n+oo. o

It follows that the Yamato estimator, f*(x), while possibly somewhat worse in
n

terms of bias is better in terms of variance. In
1 n h

under suitable conditions that if lim - L ~ =
n . 1 h.n+oo J= J

fact, Yamato (1971, p. 6) concludes

a, then lim nh var[f*(x)] =
n+oo n n



Hence

In fact, we can apply Lenuna 3 again to the expression

1 1 n
1b =- and y =l. Clearly, - L y. = - . n = 1 ~ l.n h ' n c J nn n j=l

that 0=0. Hence for the Yamato estimator,

1 n h
- ~ h

n
.. Let

n . 1
J= nJ h

!. L ....!!. ~
n . 1 h.

J= J

13

0, so

lim nh var[f*(x)] = O.
n nn-?<X>

5. A Sequential Procedure. One particularly useful application of recursively

formulated density estimators is to sequential procedures. Davies and Wegman (1975)

introduce sequential density estimation, studying in some detail rules of the form:

Stop if Ifn(x) - £n-l (X)I<E, otherwise continue.

In this section we shall discuss briefly a rule suggested by the recursive estimator

A

in thisestimator introduced

is n~ K(X~Xn).
n n

For both the Yamato estimator, f~(x), and the

f~(x), the correction term due to observation,

itself.

paper, X
n

,

(
X-X)

reasonable stopping rule might be to stop when n~ - K r gets I1too small".
n n X

Unfortunately, since nhn-?<X> and K is bounded, n~ l((X~ n) gets "too small"
n n

independent of the observations. Thus we choose a stopping variable He such that

00 if no such n exists.

N =e

First n such that 1 (X-Xn)-K--
h h

n n
< e

Theorem 5: We assume (1) and (2) hold for K and {hn} respectively.

(a) P[N <00]=1, i. e. N is a closed stopping rule.
E e

(b) ENk<oo for every k. Moreover there is a number, p, with O<p<l such
e tN

that E e e exists for t<-log p.



14

(c) If K(x»O for all x, then H-+<» in probability as £1-0.
£

(d) If K(x»O for all x, then N -+a.> a.s. as £1-0.
£

(e) Under the hypotheses of Theorems 3 and 4 and if K(x»O for all x,

fN (x) ~ f(x) a. s. as dO
£

and

t(l-y)fN (x) ~ f(x) a.s. as £1-0.
£

Proof: Let X have density, f. We first observe

1 (X-X) 1 (X-X) 1 (X-x)P[N =n] = P[h K h ~e:] ... P[-h- K -h- ~e:]P[h K h <e:]
e: 1 1 n-l n-l n n

00

= I P[N =j] = I-PI
j=l £

= 1 .

1 (X-x)where p. = P[h.- K "11:'" ~£] •
J J J

P[N <00]
£

p.~O
J

Since luIK(u)~O as u+±oo, it follows that

as j-+<». Let O<p<l, for j sufficiently

Le.

Similarly< 00 •

00 n-l-nr (etp)\)- p

n=n +1p

or t<-log p.

00 n-l-n
I nk p" p

n=n +1p
t(l+n )

e p

te p<l

00
n

Hence E Nk = I k P [N =TI] ~ rP
n

kn +
n=l e: n=l

tN n
00

y..
P

etnE £ r tn P[N =n] ~e = e +
n=l £ n=l

This latter sum will be finite provi~ed

To show (c), we note that p.t! as
J

dO. But dO.

Thus P[N >n]~l as £1-0 for fixed n. Hence N +00 in probability as £1-0.e: £
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Next let w be any point in the basic probability space. We have

hI K(X-X(w)) > 0 Let
n h .

n

E < min 1- K(X-X(w))
l<·<N h. h.-J - 0 J J

E+O,

But NO was arbitrary

NO be any positive integer. Choose

(E may depend on w). Thus Ns(w»N
O

•

lim inf N ~ NO a.s.
E+O E

lim inf N = 00 a. s.
s-+O E

Taking lim inf

Part (e) follows immediately. 0

A slightly more general stopping rule might be

N =

First n such that
x-x

1 K( n)g(h) -h--- < E
n n

00 if no such n eXists.

Were g(x) in some monotone non-decreasing function of x. To illustrate consider

the rule

N =

First n such that

00 if no such n exists

In this example, we presume XI, ... ,Xn , ... is a nCO,I) sample and we are esti-

mating f(O). Let us assume that K(x) = 1
2 '1T(I+x )

_00 < x < ~ He observe then
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Pn = P[~K(~) > £]
h nn

= 2 pro < x < h j 1
1 ]n/7-

'11'£
n

= 2(\i>'(1-1 - h ) - \fl(0))
'11'£ n

= 2\i>(j-!. - h ) - 1 .
'11'£ n

In this case, we notice that

geometric distribution.

Thus P[N =n]e: is very close to a

We also note here that, in general, we can compute the exact distribution of N
£

given the knowledge of K, {h} and f.
n
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