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The purpose of this report is to prove in detail a central limit
theorem useful in nonlinear time series regression. The main ideas
of the proof are due to Goebel (1974). The contribution here is to
obtain a stronger conclusion than his Theorem 3 and correct some

minor errors in his proof.
Lemme, 1. Let

sn(e)=zkn(e)+xkn(e) (k=1,2, ..., n=1,2, ...)

Assume that for every & > O
lim |, JBL|x  (8)] >81=0

uniformly in n and 6 . Assume

Lin, _ 7, (8) <] = N(z; 0, 0-(8))

. 2 2
lim _ , o.(8) = 77(8)
uniformly in 6 where 0< 4 S_T?(G) <p<o for all @ . Then
. 2
Lin, _ JHS,(9) < 2] = N(z3 0, 72(e))

uniformly in @ .

Proof: Given e > O there is a & > O depending on ¢ but

not 8§ or n such that
2 2
N<Z + 63 0, 7 (6))‘< N(Z5 O, 7 (9)) + e

because Tg(e> is suitably bounded from above and below. There is a



k which depends on & but not on 6 or n such that

W(z + 65 0, 02(8)) < N(z + 65 0, +°(8)) + e

H|x (8)] >8]<e

by hypothesis and the uniform convergence of Gi(e) to 72(6). Then

*
there is an n depending on k and § but not on 8§ such that

*
for all n>n
Hz, (8) <z+ 6] <N(z+ 55 0, oi(e)) +e .

*
Consequently, given e > 0O +there is an n  which does not depend

on @ such that

J
-\‘ Pls (8) =z]=Hz (6) + X (8) = z]
<Hz (8) <z+3, [x (o) <8l+ H|x (8)] >8]
<Hz (8)=z+ 8]+
<N(z+ 8; 0, 2(8)) + 2e
<N(z+ 85 0, 7(8)) + 3e

2
< N(z; 0, t°(8)) + bLe
*
for all n>n . Similar arguments can be used to show that

@ s, (8) < 2] > N(z; 0, 72(8)) - ke

for n>n’ where n’ does not depend on 0 . [J



cg(e)<°° for each t and

L 2. If su
emma, spe L

. -1 2, —
1lmn ! Z‘fé:l Ct(e) = c(9)
uniformly in § where 0<fZ <c(g) Ep <o for all § then
lim nnlsup sup.c.(g) = 0 .
n - o 1<t<n 8t

Proof: There is a sequence m, such that

2 2
SUP| < 4 < g supect(e) = supecmn(e)

The lemms would be true trivially if m ~were bounded for all n so
*
we assume the contrary. Given ¢ > O there is an n  which does

*
not depend on 6 such that for n>n we have

-1 2( )
n suplS t< l’lsu.pec,G 8

m m m -1 m -1

= supy (—3)';;; £, c(8) - () El—lr;—l .0, ca(8)]
mo m -1l _

< supgl (2)(c(8) + ¢) - (E)(e(8) - o))

supe[E(e)/n + om e/n+ ¢/n)

Swu/n+ 2 -¢/n . [

Theorem. Let {Z‘t] be the generalized linear process

0

Z, = &

67 55 o o 255 (t =0, +1, ...)



L

where Z':; - w lajl < ® and the e, are independently and identically

distributed with mean zero and finite variance o > 0. Let {ct(e)}

s}
be a sequence for which supec;(e) < ® for each t and for which

. -1l n = lhl =
Um 0" 5] cg(8ley 4 |y (8) = c(n,8)
uniformly in 6 where 0< 4 < Ek Zk a.a E(j_-j g) < p<®
= Tl = =k T = 2k 717 ? -

for ‘a,ll g and all k . Then
s,(8) = (L/wn) = _; e, (0)z,

converges in distribution to the normal distribution with mean zero

and variance

aia,'E(i-j, 8) = Z(;; _ o c(k,8)y(k)

2 3 2 o 0
T(8) = O, | _Z, 5

-0 J = 00
uniformly in 6 .

Proofs The proof consists of verifying the agsumptions of Lemma

1. We split sn(e) as

[4)]
[

[~4
= (LWn)E_q o L N

zEcl=:L Z? = -k(ctaj/"/n)et-j " zﬁ:l 5] > k(ctaj/"/n)et-j

= Zyn t Fp

where we have suppressed the argument 6 for simplicity.

Let & >0 be given. Since H Ianl >8] < Vc‘:\.r(an)/é2 by

Chebysheff's inequality, the first assumption of Lemma 1 may be



verified by showing limk -

For given

2
o, 1)? +

¢ > 0 there is a ko

(% S (% «

3 Var(an)

.

5/p 1>k jJ=k

(6°/n) g

where

T ls=s

{t:
(®/n)s

t = n,

(oz/n)2i<‘_k ZJ. < -k la a,

(n-lzrt-lhlct)

2

< (3

1>k|a'

P30, O)(Z o o oyl

P 2

<6}Ja€ao

Var(an
depending only on

|a°|)2<e for all k>k
1 o

< Var[g t 5>k cta'j/“/met

1< -k %<k ?

1+t -3+ 1

1>k J>k|a1 JI(Zt

5

) = O uniformly in n and @ .
¢ such that

Then

~j] + Var[ZtZJ, < »-k(ctaj/"/n)et-j]

*1% Tt e T CtCt-3r1

1% & o 1 £ gt

<

n}

2y

e T 't

i
2

2
B o 1 Coogri)

1

I(Zt e T t )3(

ol

2
(Zy ¢ 7 ct-j+i)

£ (5 oy o DFaTE o)

(5 < i Loyl )"

This establishes the first condition of Lemma 1.

For n larger than 2k + 1 we may split an

Figure 1)

(8) as (see



Figure 1.

C

‘1 % % % % % 9 S0 %11 %12 13

The sum 2 is obtained by multiplying each aj

v t= 123-—3 £? J ¢ j
by the corresponding terms on the horizontal and vertical axes and
‘summing. The split is accomplished by segregating terms associated

~ with those aj between the horizontal lines.



N
il

-k K
g = (1/W0) El;:k—l-l ®n Bi = -k %1%

+

Kk k-t
<1/«/n><2§=12§ = -k %%5%-5 " Tonektl ZZ{ - n-krl-t %%

The variance of V is bounded by

kn

2 2k 2
nleup, _ o o sup, < (O)E(R], zf; B EW I D

n k o)
" 8<Z'L'C“»‘nu-k-*-l EJ = =k IaJI letﬂ_jl) ] .

The term in square brackets doeg not vary with n so we have

-1 2 .
Var(an) <[n SUPy < 4 < 5 SUP, C.t(e)] B

which converges to zero as n tends to infinity uniformly in 6 by

Lemma 2. Consequently, if we show
o]
llmn - PEUkn = Z] = N(Z‘S 0, o£(e))
uniformly in @ it follows that
. . 2
lim _, , HZ, <z]=1(z; 0, 6 (8))

uniformly in 9 .
Set 4, = Zli ~ _x 8C4i+ BY Theorem 1 of Hertz (1969)

sup, |[FV/a U /s < 2] - N(z; 0, 1)| =4 (6)

where



S
0 (8) = K83 [ Py (u)au

2 2 n-k .2
Sp =0 ZES:k—Fl dy s

-k 2 2
Yn<c) - 22=k+l Ay Ildtel >c®d Fle)

and K dis a finite constant. Now

-2 1
Akn(e) =5, I 5 ‘i’(snv)dv

2k 2 p1 2
I AL J"|dte| >vs © a F(e)av

-2_n=k .2 p 1l
Sszn d»rofe2>vginf

)
n Z=ler1%t i/ai)e d F(e)av

1<t< nmfe(s

1 2
= 2 2 . 2,.2\e7d F(e)av .
I 0 I e” > v" inf, ., nlnfe(sn/dt)

Thus, if we show that

1lim inf

. 2742
n - e 1st< nlnfe(sn/dt) =2

we will have lim _ Akn(e) = 0 uniformly in @ by the dominated

» 2 02 ;
convergence theorem and the fact that I_m e“d F(e) = <o, “Now

-1 2
n s
n = n

]

Llim lim mVa,r(Ukn)

(8)
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uniformly in 6 . Moreover, 612{(6) is bounded from below by Z
uniformly in @ whence, for ¢ with 0<geg<u , there is an n

independent of 6 , such that for n > n

°

. 2,2 = -1.2
inf) oy o gi0fg(s/qp) > (u-e)/sup) oy o SRR dy

\Y

_ 1, k 2y, k
(u-e)/sup) o ¢ < poPgn (Tg o p2) (55 _

= k 2 -
(11-6)/(21{“*1)(21 - -k ai)supl < 4 < pSWPQ0

Thus,
|p(u, <z) - n(z; 0, ci(e))l
< |Hon U /s <Whz/s ] - NWhz/s ;5 0, 1)
+ |NGWh z/sn; 0, 1) - N(z/a,(8)3 O, 1)]
S 0, (0) + [N 2/5 5 0, 1) - N(z/0, (8); 0, 1)]
-0

uniformly in § as n tends to infinity.

Lastly, we verify that lim__ Oi(e) = TE(G) uniformly in 6 .

. c(i-3, @)}

2 2
|+°(8) - o(8)] = |20 = S

=}
1> x| 5= o M

i oy ° 3
4 > |k| EJ - —mlaia'j 0(1-32 e)l

z, u_,‘m]av,:‘.LaLj c(0, @)

[ K
\Y
e
()

i



because

n—l|2$=i IklACt(e)Ct + “q(e)l <n?t 22=l ci(g)

< 262(E/a§)(f§ - Iajl)(zi > |x| Iail) .

The last term on the right does not depend on 8 and may be made

arbitrarily small by increasing k . []
The result which finds application in nonlinear time series

regression is the following corollary.
Corollary. Let {Zt}: - o be the generslized linear process

4 5 = o 2383 (t=0,+1, ...)

where ﬁ? . Iaj|'< © gnd the e, are independently distributed
with mean zero and finite variance o> >0 . Let {ct}z;l be a

sequence of p-vectors for which the limit
=N as - |n| ; _
c(h) = llmn . 2@=l cpef 4 In]

exists for all h= O, + 1, ... . Assume that for each non-zero
p-vector A ‘there are finite constants £ and u which do not

depend on k such that

Then



10
converges in distribution to the p-variate normal with mean vector zero

and variance-covariance matrix

<l
[
Q
n
~
n

- 2gagle(i=d) + e(1-3)]

o Y()e() + ¢’ (n)] .

DN

Proof: We apply 2c.4 of Rao (1965, p. 103). Let X~ NP(O, V).
By the Theorem, A'Sn converges in distribution to a normal with mean

zero and variance
E SINORT L Sl R O

= . -1 - |h
- v 20T R R T M

=5, _ o ¥(n) 3 ATe(h) + /()

1l

AV oa .

Thus A'Sn converges in distribution to A’X for every non-zero A\ .
(The matrix ﬁ; s v(h)e(h) is positive definite by assumption but
it is not symmetric. This is the reason for the term 2 c(h) + c’(n)]

in V. [
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