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ABSTRACT

Suppose we have a random sample from a multinomial distribution with
K

parameters PI' P2' ••• 'PK ( ,r Pi=1) • Three likelihood ratio tests about
1=1

these parameters are considered:

(i) -1Test PI =P2 = ... =PK =K against an alternative specifying

an order restriction on the p's •

(ii) Test that the p's satisfy an order restriction against all alt~-

natives and

(iii) Test PI ~ Pz ~ .•. ~ PK against PI < Pz ~ P3 ~ ••• ~ PK •

For test (i) the asymptotic distribution under the null hypothesis is shown

to be the x2 first studied by Bartholomew. For tests (ii) and (iii) homo-

geneity is found to be an asymptotically least favorable alternative among

simple hypotheses satisfying the null hypothesis. The asymptotic distribution

of these test statistics, under homogeneity, is found to be equal to the distri

bution of the likelihood ratio statistic. for testing analogous hypotheses

about a set of means of normal populations. The analogous normal mean problem

for test (iii) is considered. (i.e. test ~l ~ Pz ~ ... ~ PK against

~l < Pz ~ Us ~ ... ~ PK .)



1. INTRODUCTION AND SUMMARY. Beginning in 1959, Bartholomew published a

sequence of papers concerning likelihood ratio tests of the equality of a set

of normal means when the alternative was a trend hypothesis. A discussion of

this and related work is given in Barlow, Bartholomew, Bremner and Brunk

(1972). In this paper we consider likelihood ratio statistics for four

testing situations where at least one of the hypotheses is a trend hypothesis.

It will be convenient to think of K-tup1es, P = (PI' P2' ••• , PK) of

parameters (for example a set of K normal means) and their estimators as

functions on the set S ={I, 2, ,K}. A trend hypothesis then becomes

an isotonic restriction on such a function (cf. Barlow et. a1. (1972)).

Suppose'~ is a partial order on S. We say that a function

p = (PI' P2' ••• ,PK) on S is isotone with respect to « , or simply isotone

if « is understood, provided p. S p. whenever i« j. For example, if
1 J

1 S a < f) S K and« is the partial order given by a« f) - 1« ••• « a then

P is isotone with respect to « if and only if Pa ~ Pa+l ~

In Section 2 we consider two hypothesis tests about the parameters
K

PI' P2' ••• ,PK of a multinomial distribution ('~l Pi = 1). Suppose« is
1=

an arbitrary partial order on S and define the hypothses Hi: i = 0, 1, 2 by~

Hi: p is isotone with respect to« ,
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and H2 places no order restriction on p. Likelihood ratio statistics for

testing the hypothesis that p satisfies HO against the alternative that it

satisfies HI but not HO (i.e. satisfies HI - HO) and for testing HI

against H2 - HI are considered in Section 2. Let AOI be the likelihood

ratio and TOI = -2~nAOl for testing HO against HI - HO ' The asymptotic

distribution, under the null hypothesis of TOl is found to be the same as

~the X , first discussed by Bartholomew (l959a, 1959b, and 1961). If

T12 = -2~nA12 denotes the test statistic for testing HI against H2 - HI

then HI is a composite hypothesis for T12 in that the asymptotic distribu

tion of T12 under HI depends on the particular p satisfying HI (i.e.

p € HI) under consideration. Theorem 2.8 gives sUPp€H
l
limn~ Pp[T12 .~ t] ~

limn~ PO[T12 ~ t] where Pp(E) denotes the probability of the event E

computed under the assumption that p is the actual vector of parameters and

PO(E) denotes the probability of E computed under HO ' Thus,

limn~ PO[T12 ~ t] is the large sample approximation to the significance level

of the test. Another way to think of this result is that the likelihood ratio

test with significance levels.colnputed UDder HO is conservative in the sense

that no matter what p in HI obtains, the actual probability of a type I

error is, at least asymptotically, no more than the reported significance level

(i.e. HO i3 aS~J~totical1y }east favorable). Showing that

sUPp€H
1

Pp [T12 ~ t] ~ PO[T12 ~ t] would seem tn be very difficult, at least

using the techniques used in this paper, due to the impossibility, in gene~al"
/

of finding a mapping froTIl one discrete random variable to another which changes

the probabilities. For example, it is easy to see that is X has a Bernoulli
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distribution with parameter p ~ ~ then there is no function f(o) such that

f(X) has Bernoulli distribution with parameter (~) • The asymptotic distri

bution of the test statistic, T12 , under HO is found to be the distribution

studied in Robertson and Wegman (1975) for testing a hypothesis, analogous to

HI ' about a set of means of normal populations,

In Section 3 we again consider a multinomial population and a likelihood

ratio statistic for testing

against H4 - H3 where

The hypothesis H3 could be interpreted as stating that the discrete distri

bution p on S is unimodal with mode at 1 and H4 - H3 states that the

mode is at 2 and not at l. The hypothesis HO is again asymptotically

least favorable for this test and, in addition, the asymptotic distribution,

under HO ' of the test statistic is equal to the distribution of a likelihood

ratio statistic for testing an analogous hypothesis about a set of means of

normal populations.

This analogous problem is studied in Section 3 where we assume we have

independent random samples from each of K normal populations having kno~m

variances and means ~1' ~2' ,., '~K' We wish to test

Hi'll > 11 > > 113' "1 - "2 - ••• - ""K
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against H4 - H; where

If A is the likelihood ratio and T =-2lnA then the significance level of

As withis a certain multivariate normal probability.

the test is given by sup UI P [T ~ t] =POrT ~ t] where pOrE] is theJ.lE:u3 J.l

probability of E computed under Hb: J.lI = J.l2 = '0' = J.lK (i.e. Hb is least
K 2 .

Furthermore, under Hb, P[T ~ t] = LR.=l P[XR._1 ~ t] 0 Q(R.,K)

denotes a x2 random variable with R. - 1 degrees of freedom

favorable).

2
where XR.-1

(x~ = 0) and Q(R.,K)

most such probabilities the Q(R.,K) are difficult to evaluate. Recursive

type relations are given in Section 5 and a table for their values for K ~ 5

is presented.

2. TESTS OF TREND AND HOMOGENEITY AGAINST TREND FOR MULTINOMIAL PROBABILITIES.

Suppose we have a random sample of size n from a multinomial distribution and

TOI = -2lnAOl where AOI

HI - HO (cf. Section 1).

is the likelihood ratio for testing HO against

~K ... - -1
Then we can write TOI = 2Li=1 n Pi[lnPi - In(K )]

where Pi is the relative frequency of occurence of the event having proba

bility Pi (i.e. the maximum likelihood estimate of Pi under H2 ) and

p = (PI' P2' •.• ,PK) is the maximun likelihood estimate of p under HI •

Let L be the collection of subsets, L, of S with the property that

j € L whenever i E: Land i« j. L is a a-lattice of subsets of Sand

the functions p and p on S are related in that p = E(pIL) (cf.

Robertson (1965)). The underlying measure space is s(S, 2 , C) where C is

counting measure.
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Assuming HO is true and using Taylor's Theorem with second degree

remainder term, expanding In(K- I ) and In(Pi) about p. we can write
J.

~K A -2 -1 A 2 -2 - A 2
TOI =1..' 1 n p.[a. (K - p.) - (3. (p. - p.) ]

J.= J. J. 1. J. J. J.

where a i and

In fact a i

d .b' -16i are ran om var1a les converg1ng almost surely to Pi = K •
A -1

is between Pi and K and (3i is, with probability one for

sufficiently large n, between Pi and Pi' The almost sure convergence
A

of ai and 6i to Pi follow from well known properties of Pi and Pi .

The first order terms in these expansions are zero because ~~ K- l = ~~ p
A

•
1..J.=1 1..J.=1 1

= r~=l Pi = I. Now, using the facts that P =E(pIL) and In[E(pIL) - K- l ]

=E(In(p - I/K)IL) we can write

It is well known that the random vector (In(PI - K- l ), I:n(pz - K- I),
r-- A -1 )

... ,vn(PK - K ) converges in law to a singular normal distribution with

-1 I= K (6 .. - K- )
J.J

Let

zero mean and variance-covariance matrix V = [vij ] where vij

and 0.. = 1 or 0 ~pending on whether i = j or otherwise.
1J

Xl' XZ' ... ,XK be independent normal random variables each having mean zero

and variance K- l • It is a simple matter to verify that the random vector

- - - -- -1 ~K(Xl - X, X2 - X, •.. ,XK - X) with X:; K 0 I..i=l Xi has singular normal

distribution with zero mean and variance covariance matrix V. Thus the

r A -1random vector vn(p - K ) converges weakly to the random vector

(Xl - X, Xz - X, •.. ,XK - X) . Now define the 3K dimensional random vector

Z by:
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" -2=p. K Q e. K1- 1"

r- " -1= yn(Pi_2K - K ):
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i =1, 2, ... ,K

i = K + 1, K + 2, ••• ,2K

i = 2K + 1, 2K + 2, ••• ,3K •

Then from Theorem 4.4 of Billingsley (1968) it follows that, under HO ' Z

converges weakly to a 3K dimensional random vector whose first 2K compo~

nents are K and whose last K components are (Xl - X, X2 - X,

Now E(QIL) is a continuous operator so that TOl is a continuous function

of Z. The following theorem follows from Corollary 1 of Theorem 5.1 of

Billingsley (1968).

Theorem 2.1. If HO is true then

Proof: It follows immediately from the considerations preceding the theorem

I ~K - 2 - 2 ~K - 2
that T01 ~ K Li=l [(Xi - X) - (Xi - Xi) ] • However Li-1 (Xi - X) =

I
K - - - 2 IK - 2 IK - - -. 1 (X. - X. + X. - X) = . 1 (X. - X.) + 2 . 1 (X. - X.)(X. - X) +
1= 1 1 1 1= 1 1 1= 1 1 1

I
K - - 2 IK - - IK - .-. ~ (X. - X) and . 1 '..X. - X.)X. = . 1 (X. - X.)X = 0 by (3.16) of
1=~ ]. 1=]. 1 1 1= 1 1

Brunk (1965). The dasired result now follows.

~K - 2 •The distribution of K Li=l (Xi - X) 1S given by Theorem 3.1 of Barlow

et. al. (1972).
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Corollary 2.2. If HO obtains then for any t

where the P(~,K)'s depend on « and are given for certain partial orders in

Barlow et. al. (1972). (Note that here we have equal weights (i.e. variances).)

Now let T12 = -2lnA12 where Al2 is the likelihood ratio for testing

HI against Then, expanding lnp.
1

about
...'
p. we can write

1

where (Xi converges almost surely to p .•
1

Theorem 2.3. If HO is true then

where Xl' X2,

and variances

,X
K

are i. i.'d. normal random variables having zero means

-1K •

Proof: As in the proof of Theorem 2.1

L t K -I - 2T12 + K Li=l [E(X - X L)i - (Xi - X)]

and E(X - XIL). =X. - X.
1 1

The distribution of K L~=l (Xi

and Wegman (1975).

X.)2 is given by Theorem 5 of Robertson
1

~~- ----------- ----- ----- -
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Corollary 2.4. If HO holds then for any t

(Note that this implies that li~~ P[T12 = 0] = P(K,K) and P(K,K) = (KI)-l

when c: is linear.)

We now argue that the asymptotic distribution of Tl2 under HO provides

the large sample approximation to the critical level for testing HI against

HZ - HI· Suppose p = (PI' PZ' ..• ,PK) satisfies HI and not HO ' Let

VI > v2 > > vH be the distinct values among {PI' PZ' •.• ,PK} and define

the partition Sl' S2' ••. ,SH of 5 by Si ={j: Pj =Vi} ;

i = 1, 2, ••• ,H. Define the relation ~ on S by a~ e if and only if

a« e and a.S € Si for some i. It is easy to see that $ is a partial

order on S. Let L(p) be the a-lattice of subsets of S induced by ~ •

If X is any function on 5 let X' be the restriction of X to Si •

Let L. be the a-lattice of subsets of S. defined by L. = {L n S.; L € L} .
1 111

Using Corollary 2.3 of Brunk (1965) and a straightforward argument it is not

difficult to see that E(X'IL.). = E(xIL(p)). for each j € S.• Using well
1 J J 1

known properties of the conditional expectation operators, verification of the

following lemmas is straightforward.

lemma 2.5. If U = (UI , U2, .•. ,UK) and V = (VI' V2,

tions on S and if V is constant on each of the sets

E(U - VIL(p)) =E(U IL(p)) - V •

,VK) are func'"

Sl' 52' •.• ,SH then
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If, in addition, V is positive then

E(V 0 UIL(p)) = V 0 E(U IL(p)) .

Lemma 2.6. If U = (UI ' U2' ••. ,UK) is any function on S such that

min. S U. > max. S U. ~ min. S U. ~ max. S U. ~ .•• > max. S U. then
Ie I 1 Ie 2 1 Ie 2 1 Ie 3 1 Ie H 1

E(UIL) = E(UIL(p) ) •

Theorem 2.7. If P satisfies HI and p holds then
\
'-

where Z = (Zl' Z2'

variables such that

,ZK) and Zl' Z2' ... ,ZK are independent random
-1Z. is normal with mean zero and variance p. •

1 1

Proof: tK A -2 - A 2
= L' 1 n p. a . (p . - p.)

1= 1 1 1 1

tK A -2 AIL A 2= L' I n p. a. [E(p ). - p.]
1= 1 1 1 1

Now, from the strong law of large numbers for sufficiently large n with

probability one

min. S p. > max. S p. ~ min. S p. > max. S p. ~
Ie 1 1 1€ 2 1 1€ 2 1 Ie 3 1

so that, using Lemmas 2.5 and 2.6 we have

~ max. S p.
Ie H 1
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for sufficiently large n with probability one. The random vector

(In(PI - PI)' In(P2 - P2)' ••• ,1:n(PK - PK)) converges in law to a singular

normal distribution with zero means and variance-covariance matrix given by

v = [v.. J where v.. = p. (0.. - p.). Let W. = p. (Z. - Z) where
1J 1J 1 1J J 1 1 1

Z =2~=1 PiZi. Then (WI' WZ' ••• ,WK) has the singular normal distribution

described above and, using an argument similar to the one given for Theorem

2.1 we conclude that

Tl2 + 2~ 1 p:l[E(wIL(p)). - W.J 2
1= 1 1 1

since E(oIL(p)) is a continuous operator. The desired conclusion now

follows by expressing W in terms of Z and using Lemma 2.5.

Theorem 2.8. If P satisfies H3 then

(i.e. HO is asymptotically least favorable).

Proof: Let Zl' Z2' ••• ,ZK and Z be as described in Theorem 2.7. Then

i.f Xi '" {Pi/K Zi from Theorem 2.3

for all t. However, the collection of all f~nctions on S is a Hilbert

space with norm given by Ilx - 111 2 = 2~=1 (Xi - yi )2. The collection,

R(L) (R(1(P))) is a closed convex cone in that Hilbert space and

E(xIL) (E(XIL(P))) is the projection of ~ on R(L)(R(L(P))) . Furthermore,
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R(L) C R(L(p)) so that 2~ 1 [E(XIL). - x.]Z ~ 2~ 1 [E(xIL(p)). - x.]2 •
1= 1 1 1= 1 1

Combining this with (2.1) we obtain

which is equal to limn~ Pp [T12 ~ t] by Lemma 2.5 and Theorem 2.7.

Thus if one wishes to test HI against HZ - HI and computes his

significance level assuming that HO is true (i.e. using Corollary 2.4) then

the test is conservative in the sense that the actual asymptotic significance

level is no more than the one reported.

3. TEST OF Ha AGAINST H4~3-. Suppose the result of an experiment must

be one of K mutually exclusive events with corresponding probabilities

PI' PZ' ••• ,PK and that past experience has indicated that PI ~ pZ ~ ••.

~ PK • However, recent experimental results have led us to believe that

perhaps PI < Pz ~ P3 ~ ••. ~ PK. For example, Pi could be the probability

that a randomly chosen family will have i-I children: i =1, 2~ •.• ,K .

In this section we consider a likelihood ratio statistic for testing

against H4 - H3 where

In our example we are testing that the modal number of children ha.s shifted

from 0 to 1. Let p = (PI' PZ' ••. ,PK) be the maximum likelihood
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estimate of p = (Pl~ P2' .•. ,PK) under HS and let P= (PI' P2' ••• ,PK)

be the maximum likelihood estimate of p under H4 . P and p can be

represented as conditional expectations of P = (PI' P2' •.. ,PK) (i.e. the

relative frequencies) where the appropriate measure is again counting measure

(for more details see Barlow et. al. (1972)). Suppose p = E(pILl ) and

p = E(pIL2) where LI C L2 •

The statistic T = -2lnA where A is the likelihood ratio can be

written

~K A - ~T = -2 ~. 1 n p.[lnp. - lnp.] •
1= 1 1 1

Expanding InPi and lnPi about Pi'

(S.l)

where

rK ~ -2 - A 2 -2 ~ A 2
T = . 1 n p. [a. (p . - p.) - a. (p . - p.) ]

1= 1 1 1 1 1 1 1

D ~.,. p. .
1 1

Theorem 3.1. If HO holds, then

where Xl' X2, •.• ,XK are i.i.d. n(O,K-1) random variables.

Proof: Using well known properties of the conditional expectation operator

and an analysis similar to that used in obtaining Theorems 2.1 and 2.S we have
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~K {" -2 (r" -1 I) r " -1 2T = Li=l Pi· ai [E vn(p - K ) Ll i - vn(Pi - K )]

- Pi • ai2
[E(In(P - K-1)IL2)i - In(Pi - K-1)]2

~ K r~=l [E(X- XILl)i - (Xi - X)]2 - [E(X - XIL2)i - (Xi - X)]2

=K r~=l [E(xIL1)i - Xi ]2 - [E(xIL2)i - Xi ]2 •

E(xILz)' It is obvious from the "pool adjacent violators" algorithm (cf.

Barlow et. al (1972)) that E(xILl ) = E(E(xIL2)IL1) so that

T k K rK
1
' __

1
(X. - X.)2 - (X. _ X.)Z

1 1 1 1

rK - ,.., 2
= K . 1 (X. - X.)

1= 1 1

is considered in

rK ,.., ,.., rK ,.., - rKsince . 1 (X. - X.)X. = 0 and . 1 (X. - X.)X. = . 1
1= 1 1 1 1= 1 1 1 1=

r~ 1 (X. - X.)X. = 0 from (3.16) of Brunk (1965).
1= 1 1 1

The distribution of K r~=l [E(xIL1)i - E(xILZ)i]2

(X. - X.)X. +
111

Sections 4 and 5. Critica.1 points for K = 2, 3, 4, 5 are given in Table 3.1.

We now show that HO is asymptotically least favorable for testing H3

against H4 - H3 •
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TABLE 3.1

Critical Points for Testing H3 against H4 - H3 •

K

Significence 2 3 4 5
Level

.1 1.642 2.145 2.380 2.516

.05 2.706 3.322 3.606 3.771

.025 3.841 4.553 4.878 5.066

.01 5.412 6.228 6.600 6.815

.005 6.635 7.520 7.923 8.156

Lemma 3.2. If U and V are points in a real Hilbert space with inner

product (0 , 0) and corresponding 11 011 and if (U - V, V) 2: 0 then

Ilu II 2: lIv II •

Proof: Note that (U - V, U) 2: (U - V, V) 2: 0 so

llull 2 - 11vI1 2
= (U - V, U) + (U - V, V) 2: 0 •

For a discussion of properties of projections on closed convex cones in a

Hilbert space and the interpretation of conditional expectations given

a-lattices in this setting see Brunk (1965). Suppose a 2: 2 and define the

partial order « on S by 1» 2» ... »a with no relation on j for

j 2: a. Let LI(a) be the corresponding a-lattice so that for any function

X on S
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Similarly let L2(a) be defined so that

for all functions X on S.

Lemma 3.3. For any function X on S

Proof: Using Lemma 3.2 consider

(E(xIL2(a + 1)) - E(xILI(a + 1)) - E(xIL2(a)) + E(xILl(a)),

E(xIL2(a)) - E(x1LI(a)))

= (E(x1L2 (a)) - E(xILI(a)), E(xIL2 (a + 1)) - E(x 1L2 (a)))

- (E(x 1L2(a)) - E(xILI(a)), E(xILI(a + 1)))

+ (E(xIL2(a)) - E(xILI(a)), E(x 1L1 (a))) .

The last two terms are zero by (3.16) and the first term is nonnegative by

(3.11) of Brunk (1965) since E[E(xIL2(a)) ILl (a)] = E(xILI(a)) and

E(XIL2(a)) - E(xIL2(a + I)} is easily seen to be Ll(a) measurable

(E(xIL2(a + 1)) = E[E(xIL2(a)) IL2(a + 1)]) • The desired result follows by

induction since L.(K) = L.: i = 1,2 •
1 1
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Theorem 3.4. For any p satisfying HS

Proof:

t > 0 •

If t S 0 then Pp[T ~ t] =port ~ t] =1 for all n so suppose

First, if PI > Pz then for sufficiently large n with probability

one PI > max2SjSK Pj • Now P = E(pILl ) and ~I =PI so that if

PI > max2SjSK Pj then P =p. Thus if PI > Pz then limn~ Pp[T ~ t] =

limn~ POrT ~ t] Suppose PI =Pz and choose ot so that PI =Pz =

Pot > Pot+I· Then we can choose a-lattices LI(a) and LZ(ot) so that

E(pILI(ot))1 ~ E(PILl (ot))2 ~ ~ E(PIL1 (ot))ot '

E(PIL2 (ot))z ~ E(pIL2 (a))3 ~ ~ E(PIL2 (ot))ot

and the other values of p are unchanged by E(oILI(ot)) and E(o/Lz(a)) •

For sufficiently large n with probability one min.~ p. > max.> +1· p.J.;:oot J J-ot J

which implies that p. =p. for j ~ a + 1, p. = ECP/LI(ot)). and
J J J J

Pj = EGPILz(a))j -for j Sa. Thus from (3.1) we have

for sufficiently large n with probability one where ai ,8i ~ Pi. Using

well known properties of the conditional expectation operator and the fact

that p is constant on {I, 2, ... ,ot} we have

o S

=

T = r~ l{P.ot:Z[E(I:n(P - p)ILI(a)). - I:n(p. _ p.)]Z
1= 1 1 1 1 1

- Pi6i2
[E(I:n(p - p)ILZ(a))i - I:n(Pi - Pi)]Z}

k I~-I p:I[E(W/L1(a)). - W.l Z - p:l[E(wILz(ot)). _ w.]Z
1- 1. 1 1 1 1 1
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where Wi = Pi(Zi - Z); Zl' Z2' ••. ,ZK are independent;

- ~Kand Z = l.i=l PiZi' Thus for any t > 0

limn-+<xl Pp[T ~ t] = p[ PI L~=l {[E(zILl(a))i - Zi]2

- [E(zIL2(a))i - Zi]2} ~ t ] •

r.;-r- -1Now taking Zi =vK/Pi • Xi where Xl' X2' ••• ,XK are n(O,K )

the fact that PI =P2 = •.• = Pa we have using Lemma 3.3

limn-+oo Pp[T ~ t] = p[ K L~=l [E(xILl(a))i - Xi ]2 - [E(xIL2(a))i 

= p[ K L~=l [E(xILl(a)) - E(xIL2(aJ)]2 ~ t ]

S p[ K L~=l [E(xIL1)i - E(xIL2)i]2 ~ t ]

and using

4. TEST H1.3...l!2 ~ ••• ~ HI( AGAINST H2~3 ~ .•. ~ 1JK-' Suppose we have

independent random samples from each of K normal populations having means

Pi and variances a~: i = 1, 2, •.• ,K. Let Xij: j =1, 2, •.• ,ni denote

the items of the sample from the i-th population. Let A be the likelihood

ratio for testing

against H4- H; where
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and let T = -2lnA. Then

(4.1) r
K -2 rK - 2 '" 2T = . 1 o. . 1 [(X .. - 11.) - (X' j - 11.) ]1= 1)= 1) ~1 1 ~1

,llK) is the maximum likelihood estimate of II under

'"HS and II is the maximum likelihood estimate of II under H4 . If we let
,.. 1 ni
lli = ni rj=l Xij then p = E(~ILl) and ~ = E(pIL2) where Ll and L2 are

as in Section 3 but now the appropriate measure on the collection of all sub

sets of S assigns mass n
1
. 0 °1: 2 to the atom {i}. Let w. =n. 0 0:2 •

111

Expanding the squares in the expression for T in (4.1) and using some

algebra we obtain

r
K - 2 rK ,.. '" - rK ,.. '" '"T = . 1 w. [ll. - tl.] - 2 . 1 w. [ll. - lli]lI. + Z . 1 w. [ll. - ll.]ll .•1= 1 1 ~1 1= 1 1 ~1 1= 1 1 1 1

The last two terms are zero by (3.16) of Brunk (1965) since p =E(~ILl) We

have

}:K - '" 2 11- "'11 2
T = . 1 w. [ll. - ll.] = II - II1= 1 1 1

where the norm is the LZ norm on the Hilbert space of all functions on S

with measure assigning weight w. to the singleton
1

{i}. Thus, T

measures the distance between the maximum likelihood estimates under HS and

H4 respectively. As in Section 3 the least favorable status of

H'·" - 11 - - tIO' ~1 - ~2 - ... - ~K

is a consequence of a result concerning projections on closed convex cones in

Hilbert space.
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lemma 4.1. Suppose Al and A2 are closed convex cones in the real Hilbert

space H and for every X ~ H let Xi be the projection P{XIAi ) on

Ai: i = 1,2. Suppose further that Al C A2 '

X E: H

and

for all X ~ H •

If X ~ H, Z ~ Al and Y = X + Z then II Y2 - Y1" s II X2 - xIII .

Proof: By Lemma 3.2 it suffices to show that (X2 - Xl - Y2 + Y1' YZ - Yl ) ~ o.
However, this inner product is equal to

The fourth and sixth terms are zero by (3.16) of Brunk (1965). The other

terms are nonnegative by (3.10) of Brunk (1965).

lemma 4.2. The function II - ~l on S is LZ measurable.

Proof: We use the fact that i ~ E(~ILl) togsther with the minimum lower

sets algorith~ for computing II from II (cf. Barlow et. al. (1972)). If II

is Ll-measurable (i.e. PI ~ P2 ) then p - i =0 and the result is obvious.
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,.. ,..
Suppose ~l < ~z and consider the minimum lower sets algorithm for computing

~ from ~. Choose a ~ 2 such that

[ ~13 ] -1 [~13 ....] [~a. ] -1 [~a .... ]max L' -1 w. 0 L' 1 w, ~, = L' 1 w, 0 L
J
' =1 wJ' ~J' = A •ISS J- J J= J J J= J

Then

=0 j ~ a + 1

and ;2 - A ~ ~3 - A ~ •.. ~ ~a - A ~ 0 so that p - ~ is LZ-measurable.

For any ~ let P~(E) denote the probability of the event E computed

under the assumption that ~ is the actual vector of means. Let PO(E)

denote the probability of E computed under the assumption that

Theorem 4.3. For any ~ satisfying H3

Proof: POrT ~ t] = P [I~ 1 w.[E(p - ~ILl)' - E(~ - ~IL2)·]2 ~ tJ .
~ J= J J J

Now the hypotheses Lemma 4.1 are satisfied with X = P- ~ and Y = P so

that

E(~ - ~IL2)j]Z = lI xi - x2U2 ~ IlY2 ,- Ylll2

~K ", ", 2= Lj=l Wj[E(~ LI) - E(~ L2)] •
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The desired result now follows immediately.

Define the random variable R by R = a if and only if ~l = ~2 =
= ~a > ~a+l· Also, let

Theorem 4.4. If ~l = ~2 = •.• = ~K then

tK 2(4.2) P[T ~ t] = ~~=l P[X~_l ~ t]Q(~,K)

where Q(~,K) is the probability that ~ assumes ~ levels on the set of

indices 1, 2, ,R (x~ =1). In addition

(4.3) P[T = 0] =Q(l,K) = P[~l ~ max2SjSK ~(2,j)]

Proof: In order to see (4.3) note that

P[T = 0] = P[~ =~]

This is equal to Q(l,K) since P[~l =~2] = 0 so Q(l,K) =P[R =1] • The

random variable T is nonnegative so that (4.2) follows easily for t sO.

Suppose t > 0 and as in the proof of Theorem 3.1 of Barlow et. al. (1972) we

partition into subsets depending on the indices where ~ and ~ are constant.

We write
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where a typical E. would be
J

,."" ,..." ~ "-1 I'.J f"IeI ,."."

Ej = [~l < ~2 =~3 = ... = ~a(2) > ~a(2)+l = ••• > ~a(t-l)+l = '0' = ~a(t)'

R = aCt)]

for some 1 = a(l) < a(2) < ••• < aCt) S K. Now on E. ,
J

_ N

~. =~. for
1 1

i > aCt) and the value of T on Ej would be

I

T = wl[~1 - ~(1, a(t))]2 + r;=2 w(a(r - 1) + 1, a(r)) 0

[~(a(r - 1) + 1, a(r)) -. p(l, a(t))]2

= T.
J

where w(a,a) = rj=a wj • Now R = aCt) implies that ~a(t) > ~a(t)+1 so

that the event Ej is equal to the intersection of the following four events.

E. (3)
J

= [~(2,a2) > ~(a(2) + 1, a(3)) > ••• > p(a(t - I} + 1, aCt))]

t a(r)
= n n [p(a(r - 1) + 1, a(r)) ~ p(a(r - 1) + 1, a)]

r=2 a=a(r-l)+1

= [PI S p(1,a(2)) S ... ~ ~(l,a(t))]

.. -+
Define the random vectors ZI and Z2 by
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Define the random vectors

+
The first a(2) - 2 components of Z2 are

~2 - ~2(2,a(2)), ~(2,3) - ~(2,a(2)), ,p(2,a(2) - 1) - ~(2,a(2)) •
-+

Continuing in this fashion the last a(~) - a(~ - 1) - 1 components of Z2

are Pa(~-l)+l - ~(a(~ - 1) + 1, a(~)), p(a(~ - 1) + 1, a(~ - 1) + 2) 

~(a(~ - 1) + 1, a(~)), .•. ,~(a(~ - 1) + 1, a(~) - 1) - ~(a(~ - 1) + 1, a(~)) •
-+ +

Each component of Zl is independent of each component of Z2 and the joint
+ -+ + +

distribution of ZI and Z2 is multivariate normal so that Zl and Z2 are
+
Z2 and T. , E. (1) , E. (3)

J J J

P[(T ~ t). n Ej ] =
independent. The event Ej (2) depends only on

+
and Ej (4) depend on ZI so that we can write

P[(T. ~ t) n E.(I) n E.(S) n E
J
.(4)] 0 P[E

J
.(2)] .

+ J + J J
Z3 and Z4 by

23 = (PI - ~(I,a(~)), ~(2,a(2)) - p(l,a(~)), ...

~(a(~ - 1) + 1, a(~)) - ~(I,a(~))

and

Z4 = (~(l,a(~)), ~a(~)+I' ~a(~)+2'

+ + +
Ej(l) and Ej (3) depend on Zs while Ej (4) depends on Z4 and Z3

-+
Z4 are independent so that

Finally using Lemma 3 of Robertson and Wegman (1975) we have



-24-

so that P[(T ~ t) n E.] =
J

lj=l P[(T ~ t) n Ej ] having a factor

result.

Combining the terms in

yields the desired

Thus the distribution of T is determined once the probabilities Q(~,K)

are found. Computation of these probabilities seems to be difficult as it

involves the evaluation of certain orthant probabilities. These probabilities

are related recursively in the next section and formulas are given for

K =2, 3, 4 •

5. THE PROBABILITIES Q(~,K). Let P(~,K) be the probability discussed in

Barlowet. al. (1972), that i assumes t levels. Recursion formulas for

P(t,K) are discussed and tables are given in Barlow et. al. (1972). The

probabilities P(t,K) and Q(~,K) depend on the weights wI' w2 ' ••• ,wK

(Wi ~ ni 0 ai2
) except when these weights are all equal. We will write

p(~,Kr (Q(JI.,K)) when the \-1eights are equal and P(R.,K; wi' w2' ••• ,wK)

(Q(JI.,K: wI' w2' ••• ,wK)) otherwise. Let Q(J/.,K) be the probability of the

event E(t,K). Let R
K

be the random variable defined by RK =a if and

if III = 1J2 = ••• = lJa > 11a+1 .

Theorem 5.1.

(5.1) Q(l,K: wI' w2'

Q(l,K - a + 1: w(l,a), w l' ...a+
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,W ]a

Q(I,K - a + 1: w(l,a), wa+l ' ... ,wK)

Proof: We have already noted that Q(l,K: wI' w2' ••• ,wK) = P[RK = 1:

wI' wz, ... ,WK] 50 that

p(l,a) > maXa+lSjSK pea + l,j)]

tK "= 1 - La=l P[~(I,a) = maxlSjSa. p(l,j)] 0

P[p(l,a) > maxa+lSjSK pea + l,j)] •

P[p(l,a) = maxIsj.:;a_l p(l,j)l =
P[p(l,a) > maxa+lSjSK ~(a + 1, j)l =

... ,wK) . The event E(R.,K) is a subevent of

Equation (5.1) follows since

P{l,a; wI' w2' ••• ,wa) and

Q(l, K - a + 1; w(l,a), wa+l '

the event [RK ~ R.] so that

and (5.2) follows from the factorization used in the proof of Theorem 4.4.

Using Theorem 5.1 the probabilities can, at least theoretically, be found.

These computations are difficult, even for equal weights since, for example,

Q(R.,K; 1, 1, ••• ,1) is expressed in terms of Q(I, K - a + 1; a, 1, ••• ,1) •
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The general technique is to find Q(l; K; WI' w2' ••. ,wK) using (5.1), then

find Q(t,K; WI' w2' ••• ,wK): t = 2, 3, ••• ,K - I from (5.2) and finally

~K-IQ(K, K: WI' w2' .•• ,wK) =1 - Lt=l Q(t,K; WI' w2' ••• ,wK). Explicit

formulas for the required multivariate normal probabilities for small values

of K are available (cf. Childs (1967». We illustrate this technique for

K = 3. It is easy to see that Q(l, 1; w) = 1 and Q(l, 2; WI' w2) =

Q(2, 2; WI' w2) = %. Consider

= (3/4) - P[p(2,3) - PI > 0, ~3 - p(1,2) > 0]

I W W

(.1-) -1..: -1 I 1 3= ~ -(2~) s~n Iw(2,3)w(1,2)

using (10) of Childs (1967). Using (5.2)

+ P[E(2,3) n CR 3 = 3)]Q(I, 1: t~(1,3»)

=~.
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Finally,

Using these same techniques expressions can be derived for

Q(~,4); ~ =1, 2, 3, 4:

[ {
. -1 I w(l,3)w2 . -1 / w(1,4)w2

Q(1,4) = (1/8) 1 + (2/~) Sln ~(1,2)w(2,S) + Sln /w(1,2)W(2,4)

. -1
+ Sln (l,4)w(2,S)

w(2,4)w(l,3)

1[ -1 /. w(l,2)w4 . -1 / wZw4 ]
Q(Z,4) = (%)-(4~)- sin Iw(1,3)w(3,4) - Sln Iw(2,3)w(3,4)

and, of course, Q(4,4) = 1 - 1~:1 Q(a,4) •

Table 5.1 was derived for equ:1.l weights using these fo:tl1ulas. These

probabilities for equal weights are the ones required for the as)~ptotic

distribution obtained in SectioIl 3. They were used to obtain Table 3.1.
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TABLE 5.1

Q(~,K) for Equal Weights

~ K 1 2 3 4 5

1 1 .5000 .4167 .3823 .3636

2 .5000 .5000 .4927 .4869

3 .0833 .1177 .1360

4 .0073 .0131

5 .0004

6. COMMENTS AND ACKNOWLEDGEMENT. The techniques used in Sections 3 and 4

depend on the iterated projection property of the conditional expectation

operators (for example, P =E(pILl )). The maximum likelihood estimate '~lder

the restriction that the vector of parameters is unimodal with mode at i is

no~ in'general, related in this way to the maximum likelihood estimate under

the restriction that it is unimodal with mode in the set {i, i + I} •

However, if one were interested in testing ~l ~ ~2 ~ ..• ~ ~i ~ ~i+l ~

~ ~K against ~l ~ ~2 s ••• s ~i < ~i+l ~ ~i+2 ~ .•. ~ ~K one could use the

techniques described in Secticn 4 which would apply to the problem of testing

~. ~ ~. I ~ ••• ~ ~K against ~. < ~. 1 ~ ~'+'2 ~ ••• ~ ~K' Certainly, there1 1+ 1 1+ 1 "

would be a 105s of power over the likelihood ratio test from throwing away the

information in the sa~ples from the first i-I populations but the signi-

ficance level would be as reported. This problem needs additional study but

the author would be surprised if the distribution of the likelihood ratio test

did not turn out to be similar to the x2 Of course the techniques presented
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would apply to the problems of testing ~l s ~2 s ••• s ~K against

~l s J.I2 s

~K-l < ~K •

The probabilities, Q(t,K) , clearly need more research. One would hope

to be able to find better recursion relationships than those given in Theorem

5.1 at least for equal weights.

This work was completed while the author was on leave from the University

of Iowa and benefited from the author's interactions with the faculty of the

Department of Statistics at the University of North Carolina•. The author is

particularly grateful to Professor Edward Wegman.
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