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ABSTRACT

Suppose we have a random sample from a multinomial distribution with
parameters p;, pys -«+ sPg ( -§1p1=1) . Three likelihood ratio tests about
these parameters are considereé?

(1) Test Py TPy = +er =pg = - against an alternative specifying
an order restriction on the p’s .

(i1) Test that the p’s satisfy an order restriction against all alter-
natives and

(1ii) Test Py 2Py 2 ... 2 pp against P; <Py 2Pz 2 ... 2P
For test (i) the asymptotic distribution under the null hypothesis is shown
to be the }2 first studisd by Bartholomew. For tests (ii) and (iii) homo-
geneity is found to be an asymptotically least favorable alternative among
simple hypotheses satisfying the null hypothesis. The asymptotic distribution
of these test statistics, under homogeneity, is found to be equal to the diétri-
bution of the likelihood ratio statistic. for testing analogous hypotheses
about a set of means of normal populations. The analogous normal mean problem
for test (iii) is considered. (i.e. test 4y 2 My 2 ... 2 Mg against

My SHy 2 Hg 2 a.. 2 g l)



1. INTRODUCTION AND SUMMARY. Beginning in 1959, Bartholomew published a

sequence of papers concerning likelihood ratio tests of the equality of a set
of normal means when the alternative was a trend hypothesis. A discussion of
this and related work is given in Barlow, Bartholomew, Bremner and Brunk
(1972). In this paper we consider likelihood ratio statistics for four
testing situations where at least one of the hypotheses is a trend hyﬁothesis.
It will be convenient to think of K-tuples , p = (pl, Pps eev s pK) of
parameters (for example a set of K normal means) and their estimators as
functions on the set S = {1, 2, ... ,K} . A trend hypothesis then becomes
an isotonic restriction on such a function (cf. Barlow et. al. (1972)).
Suppose <« 1is a partial order on S . We say that a function
P = (pl, Pys oo ,pK) on S is isotone with respect to « , or simply isotone
if « is understood, provided p; S P; whenever i<« j . For example, if
l1<a<B8<K and « is the partial order given by B« B - 1« ...« a then
p is isotone with respect to « if and only if Py 2 Pyyy = +oe 2 Pg *

In Section 2 we consider two hypothesis tests about the parameters
Pys Pgs ove 5Py of a multinomial distribution (‘gl p; = 1) . Suppose «® is
an arbitrary partial order on S and define the ;;pothses Hi: i=0,1, 2 by:

HO: Py =Pj = +o0 TP = K

Hl: p 1s isotone with respect to <« ,
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and H, places no order restriction on p . Likelihood ratio statistics for
testing the hypothesis that p satisfies Hy against the alternative that it
satisfies H1 but not 'Ho (i.e. satisfies H1 - HO) and for testing H1
against H2 - H1 are considered in Section 2. Let AOl be the likelihood
ratio and T01 = -zznx01 for testing HO against H1 - Ho . The asymptotic
distribution, under the null hypothesis of T01 is found to be the same as
the §2 , first discussed by Bartholomew (195%9a, 1959b, and 1961)., If

le = -Zznhlz denotes the test statistic for testing H1 against Hz - H1
then H1 is a composite hypothesis for le in that the asymptotic distribu-
tion of le under H1 depends on the particular p satisfying H1 (i.e.

[T,, 2 t] =

p € Hl) under consideration. Theorem 2.8 gives suppeHl limn¢w Pp 12

1imn+w PO[T12 z t] where PP(E) denotes the probability of the event E
computed under the assumption that p is the actual vector of parameters and
Po(E) denotes the probability of E computed under H, . Thus,

limn*m PO[T12 2 t] is the large sample approximation to the significance level
of the test. Another way to think of this result is that the likelihood ratio
test with significance leveis.computed under H, is conservative in the sense
that no matter what p in Hy cbtains, the actual probability of a type I
error is, at least asymptotically, no more than the reported significance level

(i.e. H, is asymptotically ieast favorable). Showing that

0

sup Pp[le 2 t] < PO[T12 2 t] would seem to be very difficult, at least

peHl
using the techniques used in this paper, due to the impossibility, in general,.
of finding a mapping from one discrete random variable to another which changes

the probabilities., For example, it is easy to see that is X has a Bernoulli
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distribution with parameter p # % then there is no function £(°) such that
f(X) has Bernoulli distribution with parameter (%) . The asymptotic distri-
bution of the test statistic, le , under HO is found to be the distribution
studied in Robertson and Wegman (1975) for testing a hypothesis, analogous to
H1 » about a set of means of normal pépulations.

In Section 3 we again consider a multinomial population and a likelihood

ratio statistic for testing
HS: Py 2Py 2 ... 2Py

against H4 - H3 where

The hypothesis HS could be interpreted as stating that the discrete distri-
bution p on S is unimodal with mode at 1 and H, - HS states that the
mode is at 2 and not at 1 . The hypothesis HO is again asymptotically
least favorable for this test and, in addition, the asymptotic distribution,
under HO , of the test statistic is equal to the distribution of a likelihood
ratio statistic for testing an analogous hypothesis about a set of means of
normal populations.

This analogous problem is studied in Section 3 where we assume we have

independent random samples from each of K normal populations having known

variances and means W, My, ... Mg . We wish to test

Hé: ul 2 uz 2 ... 2 My




against H& - Hé where

H&: Uy 2 us Z .. 2 uK .

If A 1is the likelihood ratio and T = -21lnA then the significance level of

the test is given by sup Pu[T zt] = PO[T 2 t] where PO[E] is the

ueHé
probability of E computed under Hé: By = My = oee = Uy (i.e. H6 is least
favorable). Furthermore, under Hé , P[T=21t] = §=1 P[xi_1 z2t] ° Q(z;K)
where Xz-l denotes a XZ random variable with & - 1 degrees of freedom
(xg £ 0) and Q(2,K) is a certain multivariate normal probability. As with
most such probabilities the Q(%,K) are difficult to evaluate. Recursive

type relations are given in Section 5 and a table for their values for K < 5

is presented.

2. TESTS OF TREND AND HOMOGENEITY AGAINST TREND FOR MULTIMCMIAL PROBABILITIES.

Suppose we have a random sample of size n from a multinomial distribution and
T01 = -21nA01 vhere Ael is the 1likelihood ratio for testing Ho against

H, - Hy (cf. Section 1). Then we can write Ty = 22§=1 n ﬁi[lnﬁi - ]
where ﬁi is the relative frequency of occurence of the event having proba-
bility P; (i.e. the maximum likelihood estimate of 1 under H, ) and

P = (P}, Pys +-+ sP) is the maximm iikelihood estimate of p under H, .
Let L be the collecfion of subsets, L , of S with the property that

jelL whenever i e L and i« j . L 1is a o-lattice of subsets of S and
the functions p and p on S are related in that p = E(p|L) (cf.
Robertson (1965)). The underlying measure Space is (s, 25, C) where C is

counting mezsure.
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Assuming HO is true and using Taylor's Theorem with second degree

remainder term, expanding ln(K'l) and 1n(§£) about ﬁi we can write

K

" 21
Tor = Lj=y B Pyloy (K

A ~2— a2
-pi)z-ei (p; - )71

where oy and Bi are random variables converging almost surely to p; = K"l .

In fact oy is between ﬁi and K—1 and By is, with probability one for
sufficiently large n , between ﬁi and ﬁi . The almost sure convergence

of o, and B; to p; follow from well known properties of ﬁi and E& .

N

The first order terms in these expansions are zero because X§=1 K_1 = Z§=l P;

= Z’f:l p; =1 . Now, using the facts that p = E(p|L) and vn[E(p|L) - K1

E(ZA(p - 1/X)|L) we can write

Toy = Lia {03 DG -1/017 - B8 2 [BGAG-K DL - Va7

It is well known that the random vector (fﬁ(ﬁl - K'l) s /HIﬁz - K_l), ves
oo ,/H(ﬁx - K'l)) converges in law to a singular normal distribution with
zero mean and variance-covariance matrix V = [Vij] where Vij = K-l(ﬁij - K-l}

and Sij =1 or 0 depending on whether i = j or otherwise. Let

Xl, X2, cor Xy
1

and variance K~ . It is a simple matter to verify that the random vector

»X, be independent normal random variables each having mean zero

- v = P S ¢ .
X, - % X, -% ... X -X) with X=K" - 2i=1 X; has singular normal

distribution with zero mean and variance covariance matrix V . Thus the
random vector Jﬁ(ﬁ - K'l) converges weakly to the random vector

o, -X, X, -%X, ... ,X, - X) . Now define the 3K dimensional random vector

K
Z by:



K+1, K+ 2, ... ,2K

2
ik ° Bk Pt

n
o 2
ot

= A, oy - K i= 2K+ 1, 2K*2, ... ,3K,

Then from Theorem 4.4 of Billingsley (1968) it follows that, under HO s Z
converges weakly to a 3K dimensional random vector whose first 2K compos«
nents are K and whose last K compoh;nts are (X, - X, X, - X, vve Xy - X) .
Now E(-|L) is a continuous operator so that To1 is a continuous function

of Z . The following theorem follows from Corollary 1 of Theorem 5.1 of

Billingsley (1968).

Theorem 2.1. If HO is true then

where M = (ﬁi, Yé, cee ,ik) = E(X|L) and X = (Xys X5 oen 5XQ) &

Procf: It follows immediately from the considerations preceding the theorenm
K 2 T 2 K w2 _
that T01 L K zi:l [(Xi - X)° - (ki - Xi) ] . However Zi=l (Xi - X) " =
K - % 2 _ vK 7 42 K Ty (T -
Dieg O K+ X -0 =0, 4 -XD%+2],, & -XDE, -0 +
K - 7 2 K % v _ vK CTAY =
Lieg & - 0% and I X - XK, = I, X -X)% =0 by (3.16) of

Brunk (1965). The desired result now follows.

The distribution of K Z§=1 x; - %2 is given by Theorem 3.1 of Barlow

et. al. (1972).
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Corollary 2.2. If H, obtains then for any t

. -} 2
lim P[T,, 2 t] = ),_, P(2,K)P[x 2 t]
T 01 2=1 2-1

where the P(%2,K)’s depend on « and are given for certain partial orders in
Barlow et. al. (1972). (Note that here we have equal weights (i.e. variances).)

Now let T,, = -21ni where A is the likelihood ratio for testing

12 12 12
Hl against Hz - H1 . Then, expanding lnﬁi about ﬁi we can write

K oa o = \
T2 = -2 Ljoy n pylinp; - 1np;]

o -2 — 2

X np, - i@ - D)
ij=1 P Pj ° % P; - P3

where o, converges almost surely to p; -

Theorem 2.3. 1If HO is true then

K o 2
T2 x Liag & - %)

where Xl, Xz, cas ,XK are i.i.d. normal random variables having zero means

. -1
and variances K .

Proof: As in the proof of Theorem 2.1

L

K - -
12 > K 1o [BXX - le)i - (x; - 0]

T
and E(X - ¥1L)i =X; - X.

The distribution of K Z¥=1 (X& - Xi)z is given by Theorem 5 of Robertson

and Wegman (1975).
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Corollary 2.4. If H, holds then for any t

0

K

2
g=1 P(&KPIxg o = 2] ©

1i P[T g 2 t] =

m
N> 1

(Note that this implies that lim .. P[T,, = 0] = P(K,K) and P(K,K) = (k)%
when <« is linear.)

We now argue that the asymptotic distribution of Ty, under Ho provides
the large sample approximation to the critical level for testing H1 against
Hy, - H; . Suppose p = (pl, Pos +eo ,pK) satisfies H, and not H, . Let
V] >V, > ... > vy be the distinct values among {pl, Pys oo ,pK} and define
the partition Sl’ Sz, cos ,SH of S by Si = {j: pj = vi} s
i=1,2, ... ,H. Define the relation < on S by o 8 if and only if
o« B8 and o,B € S_,.L for some i . It is easy to see that < is a partial
order on S . Let L(p) be the o-lattice of subsets of S induced by = .

If X is any function on S 1let X' be the restriction of X to Si .

Let Li be the o-lattice of subsets of S, defined by Li = {L n §;5 Le L} .
Using Corollary 2.3 of Brunk (1965) and a straightforward argument it is not
difficult to see that E(X'ILi)j = B(XIL(p))j for each j € Si . Using well
known properties of the conditional expectation operators, verification of the

following lemmas is straightforward.

Lemma 2.5. If U= (Ul’ Ups oo ,UK) and V = (Vl, Vos een ,VK) are func-

tions on S and if V is constant on each of the sets Sl’ Sz, cee ’SH then

E(U - v|L(®) = EQUIL®) -V .
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If, in addition, V 1is positive then

E(v - ulL(@) = v - E(u]L(p)

Lemma 2.6. If U= (Ul’ Uys vne ,UK) is any function on S such that

mlnies1 Ui > maxies2 Ui 2 mlniesz Ui > maxiess Ui 2 ... > maxiesH Ui then

EWIL) = E(U|L(p)) .

Theorem 2.7. If p satisfies H and p holds then

Ti2 5 2§=1 pi(E(Z|L(p)) = Zi)z

where Z = (Zl, 22, cos ,ZK) and Zl, 22, vee ,ZK are independent random

. . . . -1
variables such that Zi is normal with mean zero and variance Py -

, K a2 = a2
Proof: T, =]. . np; o] (p; - ;)

K P S . .2
= 25_:1 np; % [E(PlL)i - Pi]

Now, from the strong law of large numbers for sufficiently large n with

probability one

mlnies1 pi > maxi€82 Pi 2 mlniesz pi > maxies3 pi 2 see 2 maxieSH pi

so that, using Lemmas 2.5 and 2.6 we have

_ vk -2 2

T12 = Li=1 n I;i ai [E(I;“-(P))i - 1;1]

= Y5q By - oPE(A® - PIL®); - A B - pp1?
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for sufficiently large n with probability one., The random vector
(Mﬁtﬁl - p)> VﬁIﬁz - Py)s e ,¢E(§K - pK)) converges in law to a singular
normal distribution with zero means and variance-covariance matrix given by

i) J
5 K .
Z = Zi=1 p;Z; - Them (W, Wy, ... ,W,) has the singular normal distfibution

) . Let W, =p.(Z, - Z) where

described above and, using an argument similar to the one given for Theorem

2.1 we conclude that

2

K -1
le > ij=1 Pi [E(WlL(P))i - wi]

since E(o L(p)) is a continuous operator. The desired conclusion now

follows by expressing W in terms of Z and using Lemma 2.5.

Theorem 2.8. If p satisfies H, then

3

lim P_[T
P

2 t] < lim P.I[T., 2 t]
. e 08712

12

(i.e. Ho is asymptotically least favorable).

Proof: Let Z., Z., ... ,Z, and Z be as described in Theorem 2.7. Then

1’ 72 K
2f X, = Vpi/K Zi from Theorem 2.3

(2.1)  1lim_ P [T, 2 t] = Pp[ K )j.’i(“l [E(X[L)i - xi]2 > t:[

11~

for all t . However, the collection of all functions on S 1is a Hilbert
"

space with norm given by [[X - ¥{[* = Xg:l (x; - Yi)2 . The collection,

R(L)[R(L(p))] is a closed convex cone in that Hilbert space and

E(xIL)[E(XIL(p))} is the projection of X on R(L){R(L(p))] . Furthermore,
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R(L) < R(L(p)) so that Tt . [E(x|L); - x;1% 2 J5_, [E(ILG), - X012 .

Combining this with (2.1) we obtain

lim . PolT, 2 t] 2 pt_ K 2§=1 [E(x|Lm); - xi]z 2t :]

which is equal to Iimn+“ Pp[le 2 t] by Lemma 2.5 and Theorem 2.7.

Thus if one wishes to test H1 against H2 - H1 and computes his
significance level assuming that H0 is true (i.e. using Corollary 2.4) then
the test is conservative in the sense that the actual asymptotic significance

level is no more than the one reported.

3. TEST OF H3 AGAINST H@ - H3 . Suppose the result of an experiment must
be one of K mutually exclusive events with corresponding probabilities

Pys Pps «er 5Py and that past experience has indicated that Py z P,y z ...
.++ 2 pg . However, recent experimental results have led us to believe that
perhaps Py <P, 2Pz 2 ... 2pp. For example, P; could be the probability
that a randomly chosen family will have i - 1 children: i =1, 2, ... ,K.

In this section we consider a likelihood ratio statistic for testing
HS: Py 2 Py 2 .. 2 P

against H4'— H3 where

In our example we are testing that the modal number of children has shifted

from 0 to 1. Let p= (p;, Py -++ sP) be the maximum likelihood
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estimate of p = (p;, Py» ... ,Pg) under H, and let § = (§, ﬁz, coe sBy)
be the maximum likelihood estimate of p under H4 . p and P can be
represented as conditional expectations of ﬁ = (51, 52’ e ,ﬁK) (i.e. the
relative frequencies) where the appropriate measure is again counting measure
(for more details see Barlow et. al. (1972)). Suppose p = E(ﬁlLl) and

P = E(ﬁle) where L, <L, .

The statistic T = -2In) where A is the likelihood ratio can be

written

=3
]

K ~ oy ~
-2 Zi=1 n p, [Inp; - 1np,] .

Expanding lnﬁk and 1np; about ﬁi ,

K

AL w2 A2 2 A2
(.1 T= )52 0 Pilo;"(py - p)" - 8;7(B; - py)7]

a.s
wher o, . —*> 1D, .
here i’ Bl p; -

Theorem 3.1. If H, holds, then

0
K 2

T4 K ¥ EGIL); - BELy),]

where Xl’ Xz, aee ’XK are i.i.d. n(O,K'l) random variables.

Proof: Using well known properties of the conditional expectation operator

and an analysis similar to that used in obtaining Theorems 2.1 and 2.3 we have
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1 {ﬁi + o PEVRG - KDL, - A - kD)2

- B; ¢ BPEMAG - kDL), - G, - k1P
bxIf, - XL, - o - D12 - B XL, - o - D1
2

K Z§=1 [EX|L,), - xi]2 - [EX|L); - X;]

Now let M = (Yi,vf', ces ,fk) = E(XILI) and X = (il, iz, cee ’iK) =

E(XlLZ) + It is obvious from the "pool adjacent violators" algorithm (cf.

Barlow et. al (1972)) that E(X|L)) = E(E(lez)ILl) so that

)2

Tk Z§=1 X, - xi)2 - & - x

K — ~ 2 ~ — ~
K)oy (G - X7+ 2k 1) (X - X - X))

t
=~
£~

Fa
foudd
~
]
|
ta]
s

i=
since ZK (X, - X)X, = 0 and ZK (X. - X)X, = ZK (X, - X)X, +
i=1 i i’%i i=1 74 i1 i=1 Yi i’
K = ~.%
Lieg & - X)X, = 0 from (3.16) of Brunk (1965).
The distribution of K Z§=1 [E(lel)i - E(XILz)i]2 is considered in
Sections 4 and 5. Critical points for K =2, 3, 4, 5 are given in Table 3.1.

We now show that HO is asymptotically least favorable for testing H3

against H4 - H3 .
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TABLE 3.1

Critical Points for Testing H3 against H4 - H3 .

X
Significence 2 3 4 5

Level

.1 1.642 2.145 2.380 2.516
.05 2.706 3,322 3.606 3.771
.025 3.841 4,553 4.878 5.066
.01 5.412 6.228 6.600 6.815
. 005 6.635 7.520 7.923 8.156

Lemma 3.2. If U and V are points in a real Hilbert space with inner

ol

and if (U -V, V) 20 then

product (°,°) and corresponding |

ol = Qv .
Proof: Note that (U-V, U) 2 (U-V,V) 20 so
2 2
full -vll“=@w-v,m+@-v, v =20.

For a discussion of properties of projections on closed convex cones in a
Hilbert space and the interpretation of conditional expectations given
o-lattices in this setting see Brunk (1965). Suppose o 2 2 and define the
partial order « on S by 1» 22> ,,,>» o with no relation on j for
jzoa. Let Ll(a) be the corresponding o-lattice so that for any function

X on S

E(X|L @), 2 BE(X|L, (), 2 ... > E(X|L, (@), .
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Similarly let Lz(a) be defined so that

B(X|L, (@), 2 E(x|L,(e))5 2 ... 2 E(X[L,(0),
for all functions X on S .

Lemma 3.3. For any function X on §

Ie(x]L, @) - B(xlL, @)% slExIL) -ExjL) 1P

Proof: Using Lemma 3.2 consider

[E(XILz(a + 1)) - B[ (e + D) - E(X]Ly(@) + E(X]|L, (),

E(X|L, (o)) - E(XILlca))}

= (E(XILZ(a)) - E(x]L (@), E(X|L,(a + 1)) ‘- E(lezca))]
- (i) - £IL @), EiIL G+ )

+ [BIL,@) - (L @), BXIL @) .

The last two terms are zero by (3.16) and the first term is nonnegative by
(3.11) of Brunk (1965) since E[E(X|L,(a))|L,(@)] = E{X|L;(a)) and
E(Xle(a)) - E(XILz(a + l)) is easily seen to be Ll(a) measurable
[E(X]Lz(a + 1)) = E[E(X|L,(@)) L (o + 1)]] . The desired result follows by

induction since Li(K) = Li: i=1,2.
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Theorem 3.4. For any p satisfying Hy

limn*m PP[T 2 t] < limn+“ PO[T 2 t] .

Proof: If t < 0 then Pp[T 2 t] = PO[T 2t] =1 for all n so suppose
t >0 . First, if P; > Py then for sufficiently large n with probability
one ﬁl > maxy s ok ﬁj . Now p = E(ﬁlLl) and B, = ﬁl so that if

ﬁl > max then p =p . Thus if Py > Py then limn+@ PP[T 2t] =0<x

2<j<K Igj
limn*m PO[T 2 t] . Suppose P, = P, and choose o so that p, =p, = ... =
Py > Pos1 * Then we can choose o-lattices Ll(a) and Lz(a) so that |
E(plL; (@), = E(p|L; (@), . 2 E(p|L, (@), >

B(p|Ly (), 2 BBILy(@)5 2 ... 2 Blp|L,y (@),

and the other values of p are unchanged by B(“lLl(“)) and E(»ILz(a)) .

v

v

For sufficiently large n with probability one miana

which implies that 55 = ﬁj for jza+1, 53 = E(ﬁ[Ll(a))j and

Pj ” 2041 P

~

B; = E(ﬁ[Lz(a))j -for j <a . Thus from (3.1) we have
T=J% noplaEGIL@); - 5:.)% - 8T2EMIL@); - 5.)%
i=1 itti 1 i i i 2 i i

for sufficiently large n with probability one where ai’Bi > P - Using
well known properties of the conditional expectation operator and the fact

that p is constant on {1, 2, ... ,a} we have
T = 2§‘=1{ﬁia;2te(/ﬁc§ - PIL ) - AG; - p;)]?
- B;B P IE(AG - P Ly(@); - YA - pi)lz}

10 oML @) - W% - ptE(] L), - w1
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- . . -1
where Wi = pi(Zi - 1) 3 Zl, 22’ oo ,ZK are independent; Zi is n(O,pi )

and Z = Z§=1 p;Z; - Thus for any t >0

lim . PP[T > t] = p[ Py Zgﬂ {[E(ZILl(a))i - zi]2

- [B(zlL, (), - zi]z} >t :[ .

Now taking Zi = »’K/pi J Xi where X., X ,XKV are n(O,K'l) and using

19 2’ v
the fact that P 5Py = ... =p, We have using Lemma 3.3

kI BEIL@); - 51 - BRIL@); - xR e

n K Z§=1 [E(X'Ll(“)) = E(Xle(a))]z zt :]

|
fa~

11mn+“ Pp[T 2 t]

]
o~}

< p__ K X§=1 [E(XILl)i - Eclez)i]2 2t ]

11mn¢w PO[T 2 t] .

4. TEST By 2 U 2 . 2 Yy AGAINST Yo 2 P 2 .00 2 Wy . Suppose we have

2
~

independent random samples from each of K normal populations having means

u., and variances ai: i=1, 2, ... ,K. Let Xi j=1, 2, ... oMy denote

i j: ,
the items of the sample from the i-th population. Let XA be the likelihood

ratio for testing

v

Hé: ul 2 U, 2 ...

against HA - Hé where
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and let T = -21n)x . Then

(4-1) T = §=1 o;Z X§=1 [(Xij - E&)z - (Xij - gi)zl

where u = (ﬁi, Eé, - ,ﬁk) is the maximum likelihood estimate of p under
Hé and ﬁ is the maximum likelihood estimate of u under H& . If we let
n

=01 V.1 X, then ¥ = E(ﬁ]Ll) and y = E(ﬁILZ) where L, and L, are

s SRS B &

as in Section 3 but now the appropriate measure on the collection of all sub-
sets of § assigns mass n, ° 052 to the atom {i} . Let W, =7, ciz .
Expanding the squares in the expression for T in (4.1) and using some

algebra we obtain

K 2 K Ao K " e
T Qiag WalWg - wgd” - 2 Dy vl - wylwg + 2 Iiy vyl - gy

The last two terms are zero by (3.16) of Brunk (1965) since u = E(HILl) . We

have

K -~ 2 g 2
T = i=1 wi[ui - ui] = ”u = uu

where the norm is the L, mnorm on the Hilbert space of all functions on S
with measure assigning weight w, to the singleton {i} . Thus, T

measures the distance between the maximum likelihood estimates under Hé and

HA respectively. As in Section 3 the least favorable status of

is a consequence of a result concerning projections on c¢losed convex cones in -

Hilbert space.
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Lemma 4.1. Suppose Ay and Az are closed convex cones in the real Hilbert

space H and for every X e H 1let Xi be the projection PfX[Ai) on

Ai: i=1,2, Suppose further that A1 c A2 s

X, = p(leAl) . for-all XeH
and

X, - X, € A

2 1 2 for all X e H .

If XeH, ZeA and Y=X+2Z then [y, - Y1” <%, - xdl -

1

Proof: By Lemma 3.2 it suffices to show that (X2 - Xl - Y2 + Yl’ Y2

However, this inner product is equal to

(X2 -X-X, -Z2+Y~Y,+Y., Y

1 2 2 =¥ =

1,
-(X - XZ, YZ

+ (Y =Yy, X)) - (Y - Y, Yp) + (Y, - Y,

- - (- Y X)) - (Y -

- Yl) z 0.

Y., 2)

1’

Yl) .

The fourth and sixth terms are zero by (3.16) of Brunk (1965). The other

terms are nonnegative by (3.10) of Brunk (1965).

Lemma 4.2. The function p -5 on S is L2 measurable.

. Proof: We use the fact that u = E(ﬁlLl) together with the minimum lower

sets algorithm for computing ¥ from ﬁ (cf. Barlow et. al. (1972)).

If §

is Ll-measurable (i.e. El 2 32 ) then E - ¥ £ 0 and the result is obvious.
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Suppose ﬁl < Hz and consider the minimum lower sets algorithm for computing

% from p . Choose o 2 2 such that

- o -1, o ~ g
T:}BC [ 2] =1 J o | 23,,1 j J [ Zj=1 WJ} [ 2j=1 wj 113] A.
Then
Us - W = ps - A <
S B Bl j =
=0 tj2a+l.

and ;é - A2 53 ~-A2z.,..2 ;; - A20 so that ; -y is Lz-measurable.
For any u let Pu(E) denote the probability of the event E computed
under the assumption that u is the actual vector of means. Let PO(E)

denote the probability of E computed under the assumption that

u1=u2=.,.=uK=O.
Theorem 4.3. For any u satisfying Hi

PIT 2 t] s Py[T 2'¢] .

______PV‘OOf: po[T 2 t] = LXJ =1 J{E(l—\ - ““'l)j - E(ﬁ - UILz)j]z 2t ] .

Now the hypotheses Lemma 4.1 are satisfied with X =g - u and Y = B so

that
PN ~ 2 2 2
150 Wy BGE - ulLpy - BG - w1 1% = Ix - %07 2 Dy, - v

= Iy wylBGiILY - BGilL1?
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The desired result now follows immediately.

L)

Define the random variable R by R =a if and only if E& =

L > Hys1 Also, let

n(a,B) = [ Z?=a wj]"l o [ Z§=u wj 1:] .

J
Theorem 4.4. 1If By =My = oo =y then
K 2
(4.2) P[T 2 t] = 2=1 P[xz_l z t]Q(L,K)

where Q(2,K) is the probability that U assumes % levels on the set of

indices 1, 2, ... ,R (xg = 1) . In addition

(4.3) PIT = 0] = Q(1,K) = P[ii; 2 max, s 0(Z,))] .

Proof: In order to see (4.3) note that

P[T = 0] = P[w = 1]

LR, 2 3]

Pliy 2 maxy ;e W(2,0)] .

This is equal to Q(1,K) since P{ﬂl = ﬁz] =0 so Q(1,K) = P[R=1] . The
random variable T is nonnegative so that (4.2) follows easily for t <0 .
Suppose t > 0 and as in the proof of Theorem 3.1 of Barlow et. al. (1972) we
partition into subsets depending on the indices where ¥ and § are constant.

We write
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m

P[T 2 t] = 3=1

P[(T=21¢t)n Ej]

where a typical Ej would be

~ ~

By=lup <up =g = vee =y > Buigyap = vor > Ma(pe1)el = 00 = Ha(e)?

R=a(2)]

for some 1 = a(l) < a(2) < ... <a(2) s K. Now on Ej s ﬁ& = :i for
i > a(2) and the value of T on Ej would be

!

T

wl[ﬁ1 - uf1, a(!?,))]2 +* Zi=2 w(a(r 1) + 1, a(@®) -

o - 1) + 1, a@) - a1, «2))1?

T.
J

_ B _ . . ~ ~
where w(a,B) = zj=a Wi . Now R=a(2) implies that Wy .y > U (py,; SO

that the event Ej is equal to the intersection of the following four events.

E;(1) = [u(2az) > 6(a@@ + 1, a®) > .. > ifo@@ - 1) + 1, )]
L a(r) . .
E.(2) = n n ula(r - 1) + 1, a(®) 2 ulalr - 1) + 1, 8)]
J r=2 B=a(r-1)+1
E;(3) = [y s u{l,e@) = ... < u(1,0(0)]
.Ej(4) = (1,00} > MAX a0 ()41 alagz) + 1, j) .

+ >
Define the random vectors Zl and Z2 by

Zl = (1 W1(2,0@), ... ile@d - 1+ 1, o), ﬁa(2)+1’ oo i)
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->
The first «(2) - 2 components of Z2 are

Hy - 1,(2,0(2)), 12,3) - i(2,0(2), ... ,i(2,0(2) - 1) - i(2,0(2)) .
Continuing in this fashion the last o() - a(% - 1) - 1 components of 22
are fl o 13,1 - plae - 1 + 1, a(®) , ffe@-1) +1, a2 -1) +2) -
ifee - 1) + 1, a®), ... 00 - 1) +1, a(®) - 1) - ufaCe - 1) + 1, @) .
Each component of El is independent of each component of ;2 and the joint
distribution of 21 and Eé is multivariate normal so that 21 and Eé are
independent. The event Ej(Z) depends only on Eé and Tj s Ej(l) , Ej(3)

-5
and Ej(4) depend on Z, so that we can write P[(T 2 t). n Ej] =

1
P[(Tj 2 t) n Ej(l) n Ej(3) n Ej(4)] ° P[Ej(Z)] . Define the random vectors

->

->
Z3 and Z4 by

>

Zg = (1 - 00M), W(2,0) - 1(1,00)), ...

u(oge - 1) + 1, a) - a(1,0(2)

and

- N N R -
Z4 = (u(l,d(ﬂ)), uau),,_l, uacz).‘_zs oo ,MK) .
- -> -
Tj , +Fj(1) and Ej(s) depend on Z3 while Ej(4) depends on Z4 and Z3
and Z4 are independent so that
P[(T2t)n Ej] = P[(Tj 2t)n Ej(l) n chs)] ° P[Ej(4) n 53(2)] .

Finally using Lemma 3 of Robertson and Wegman (1975) we have

- 2
P[T 2 tIEj(I) n Ej(3)] = PlXy(5y-1 2 t]
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so that P[(T 2 1t) n Ej] = P[xz(z)_1 2t] o P(Ej) . Combining the terms in
Z?=1 P[(T21t) n Ej] having a factor P[xi_1 2 t] yields the desired
result.

Thus the distribution of T 1is determined once the probabilities Q(&,K)
are found. Computation of these probabilities seems to be difficult as it |
involves the evaluation of certain orthant probabilities. These probabilities
are related recursively in the next section and formulas are given for

K=2,3,4,

5. THE PROBABILITIES Q(2,K) . Let P(%,K) be the probability discussed in

Barlow et. al. (1972), that 1 assumes & levels. Recursion formulas for
P(2,K) are discussed and tables are given in Barlow et. al. (1972). The
probabilities P(%,K) and Q(2,K) depend on the weights Wys Wos een ,Wp
(wi =n; ° 052) except when these weights are all equal. We will write
P(%,K) (Q(R,K)) when the weights are equal and P(2,K; Wis Wos ees ’WK)
(Q(%,K: Wis Wys oo ,wK)) otherwise. Let Q(2,K) be the probability cof the
event EB(%,K) . Let RK be the random variable defined by RK = o if and

>

if My T Hy = coe =0, > Uy .

Theorem 5.1.
(5.1) Q(1,K: Viys Wos ees ,wK) = P{RK = 1: Wis Wos eee ,wK]
K

=1 - Z&=2 P(L,6: Wy, Wy, oou ,W) ¢

q1,K - o + 1: w(1,0), Wil cer ,wK}
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K
(5.2) QUE,K: wy, Wy, e yw) = L) PIE(R,0) 0 (Ry = a): Wy, Wy, won W ]

N )

QLK = o+ 12 w(l,0), W 1y +on sW)

Proof: We have already noted that Q(1,K: Wiy Wos eee W) = P[RK = 1:

Wis Wy, oo ,wK] so that

K
Q(1,K: Wis Woy one ,wK) 1 - Zq=2 P[RK = 05 Wi, Wo, e ,wK]

max ﬁ(lsj):

L - Joup PLICL®)

1<j<a
u(l,e) > max,,1<jsK u(e + 1,3)]

K
a=1

=1 - P[i(1,0) max; iy M(1,3)] -

P[ﬂ(l,u’) > maxa_'_lsjsx ﬁ(a + 1’j)] .

Equation (5.1) follows since P[u(l,0) = mz:uclsjs@__1 u(1,31)] =
P(1,0; Wy, Wy, ... ,W ) and P{u(l,a) > MAX, 41 <j<K (e + 1, j)] =

Q(l, K~-a+1; wila), w ,wK] . The event E(%,K) 1is a subevent of

a+l?

the event [RK 2 %] so that
K
QL2,K; Wy, Wy, o W) = o0 PIE(R,K) n (Ry = o)]
and (5.2) follows from the factorization used in the proof of Theorem 4.4.

Using Theorem 5.1 the probabilities can, at least theoretically, be found.
These computations are difficult, even for equal weights since, for example,

Q(2,K; 1, 1, ... ,1) 1is expressed in terms of Q(1, K-a + 1; o, 1, ... ,1) .
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The general technique is to find Q(1; K; Wy, Wos wee ,wKQ using (5.1), then
find Q(&,K; Wis Wps ..o ,wK): 2 =2,3, ... ;K-1 from (5.2) and finally
QK, K: wy, Wy, cue W) =1 - Eg;i Q(2,K; wy, Wy, ... W) . Explicit
formulas for the required multivariate normal probabilities for small values
of K are available (cf. Childs (1967)). We illustrate this technique for
K=3, It is easy to see that Q(1, 1; w) =1 énd Q(1, 2; Wi, w2) =

Qe2, 2; Wi, Wy) = % . Consider

Q1 35 wy, Wy, Wg) = 1 = P(1, 25 wy, wy)Q(1, 25 w(1,2), w,)

- P(]-: 3; w].’ wz: ws)Q(l, 1; W(1,3))

1l - (%)P(]-: 2; Wls wz) - P(]-’ 5; wl’ Wzs Ws)

1 - (BPLH; < 6,) - PIY; < 6(2,3), §(1,2) < 4]

(3/4) - P[i(2,3) - i) > 0, ug - U(1,2) > 0]

-1/ Yi¥
(B -(2n) " sin ° e uTay

using (10) of Childs (1967). Using (5.2)
Q(2, 3: wy, Wy, wy) = P[E(2,2) n (R, = 21Q(1, 2: w(1,2), w,)

+ P[E(2,3) n Ry = 3)1Q(1, 1: w(1,3))

BPLH, < #,] + PL, < iy, 1) < 1(2,3)]

(%) + P[ﬁz < ﬁs]p[ﬁl < ﬁ(2,3)1

% .
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Finally,
Q(3, 3: Wi, Wo, WS) =1 - Q(2, 3: Wy, Wo, WS) - Q(1, 3: Wis Wy, w3)

W, W
= -1 .. -1 173
=(2m) “sin /oW (L D)

Using these same techniques expressions can be derived for

Q(2‘34); R‘ = 1; 2, 3’ 4:

(1/8)[1 + (2/7) sin-lm—_’_ . _I/WCTTW{—
w(l,2w(z,3) = o w(l,20w(2.4)

Q(1,4) =
. (1,4)w(2,3) .
+51n (24)W13}]’
1 1 [ w(i, 2)w //
Q(2,4) = (¥)-(4m) [Sm W(l,3)w(3,4) sin” w_“"j‘(z 3 w'('S"T.- ]

(3,4) -1} sin™! 1" + sin"1l/ 1
Q(3,4)-(4m) SIN LWz, 3y S V(T v, 4)
-1 ’wlw(3,4 —1
+ sin /dffjiiﬁffiif.q

and, of course, Q(4,4) =1 - Zi=1 Q(o,4) .

Table 5.1 was derived for equal weights using these formulas. These
probabilities for equal weights are the ones required for the asymptotic

distribution obtained in Sectiom 3. They were used to obtain Table 3.1.
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TABLE 5.1
Q(2,K) for Equal Weights
X1 2 3 4 s
1 1 .5000 .4167 . 3823 . 3636
2 5000 .5000 .4927 .4869
3 .0833 1177 ' .1360
4 L0073 .0131
5 . 0004

6. COMMENTS AND ACKNOWLEDGEMENT. The techniques used in Sections 3 and 4

depend on the iterated projection property of the conditional expectation
operators (for example, W = E(KILIJ ). The maximum likelihood estimate wnider
the restriction that the vector of parameters is unimodal with mode at i is
not, in-general, related in this way to the maximum likelihood estimate under
the restriction that it is unimodal with mode in the set {i, i + 1} .
However, if one were interested in testing ¥y < Uy £ ... 8 By = Mie1 2 .,..

2 My against Hy < My S ve. S My < Hia1 2 Hi4 2 ... 2 Hg one could use the
techniques described in Secticn 4 which would apply to the problem of testing
My 2 Hs41 2 L. 2 My against My < L b Hi42 2 oo 2 Mg - Certainly, there
would be a loss of power over the likelihood ratio test from throwing away the
information in the samples from the first i - 1 populations but the signi-
ficance level would be as veported. This problem needs additional study but
the author would be surprised if the distribution of the likelihood ratic test

2

did not turn out to be similar to the ¥° . Of course the techniques presented



-29-

would apply to the problems of testing Hy Sy S oue S against

My < M, ... S Mg > Mg 9r Hy 2 U, 2 .. 2 Mg against Hy b My 2 ... 2
<uK,

The probabilities, Q(&,K) , clearly need more research. One would hope

Hk-1

to be able to find better recursion relationships than those given in Theorem
5.1 at least for equal weights.

This work was completed while the author was on leave from the University
of Iowa and benefited from the author's interactions with the faculty of the
Department of Statistics at the University of North Carolina. The author is

particularly grateful to Professor Edward Wegman.
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