LIKELIHOOD RATIO TESTS FOR
 ORDER RESTRICTIONS IN EXPONENTIAL FAMILIES

by
Tim Robertson

Department of Statistics
University of Iowa
and
University of North Carolina at Chapel Hill

and
Edward J. Wegman¥*

Department of Statistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 995

April, 1975

* Thé:work of this author was supported in part by the Air Force office of
Scientific Research, under Contract No. AFOSR-75-2840.



LIKELIHOOD RATIO TESTS FOR
ORDER RESTRICTIONS IN EXPONENTIAL FAMILIES

by

Tim Robertson

Department of Statistics
University of Iowa

and
University of North Carolina at Chapel Hill

and

Edward J. Wegman*

Department of Statistics
University of North Carolina at Chapel Hill

ABSTRACT

This report is on a continuation of the work discussed in Robertson and
Wegman (1975). The results of a Monte-Carlo study of the power of the likeli-
hood ratio statistic considered in the previous paper are discussed. The
asymptotic distributions for the likelihood ratio statistics for testing homo-
geneity against trend and trend against "otherwise' when the sampled distri-

butions belong to an exponential family are given.
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1. Introduction: This report is on a continuation of the work discussed in

Robertson and Wegman (1975). 1In Section 2 we discuss the results of a Monte-
Carlo study of the power of the likelihood ratio statistic considered in the
previous paper. In order to be able to make comparisons we in¢luded in this
study a statistic proposed by Van Eeden (1958) for testing the same hypothesis.
In Section 3, we also consider tests for trend in parameters when the

parameters involved arise from a distribution of the exponential type. The
distribution for the likelihood ratio statistic for testing a trend hypothesis
about normal means is shown to be the asymptotic distribution for the likeli-
hood ratio statistic for an analogous test whenever the sémpled distributions

are members of the exponential family.

2. Monte Carlo Study: 1In this section, we report the results of a Monte-

Carlo study of the power of the likelihood ratio statistic considered by
Robertson and Wegman (1975). Following the notation of Barlow, Bartholomew,
Bremner and Brunk (1972), suppose we have independent random samples from
each of k normal populations indexed by Xgt i=1,2, ... ;,k . Suppose
u(xi) is the mean of the population indexed by x; and << is a partial
order on S = {xl, Xgs - ,xk} . A function r(c) on S is isotone pro-
vided r(xi) < r(xj) whenever Xy <<\xjﬂ. Robertson and Wegman consider the

likelihood ratio for testing the null hypothesis
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Hl: u(e) 1is isotone

versus H2 - H1 where H2 places no restriction on u(<) . In this Monte-
Carlo study, we restrict our attention to a null hypothesis which specifies a
linear order, i.e. H;: u(xl) 2 u(xz) 2 ..., 2 u(xk) . We also take the
variances oz(xi) to be one and draw the same number of items from each
population. Computation of the likelihood ratio test statistic is discussed
and a table of critical values for this null hypothesis is given in Robertson
and Wegman.

Van Eeden (1958) proposed another statistic for testing HI against

Hz - H¥ , namely sz = MaX; skl (X(xi+1) - X(xi)) where X(xi) is the

1
sample mean of the iEE-pcpulation. Let o be a "target" significance level
and let o* = a/(k - 1) . The critical point for Van Eeden's test when
2 " .
g (xi) =1 is

ta* = v¥2/n - Ea*

where n 1is the number of observations made on each population and where Eo

is defined by

00

(1/VZ71) f o~ FX dx = o* .
E &

a
The true significance level a, = suPp(v)eH? P[T}, 2 ta*lu(°)] is bounded
above by a and below by o - %uz . For this study we chose o = ,05 and
.01 so that .,04875 < % £ .05 for o= ,05 and ,00995 < % < .01 for
a= .01,

Normal pseudo-random variates were generated according to the well-known

Box-Mueller transform and sample means, iIxi),, based on n = 100 were
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calculated. For three different types of alternate hypotheses estimates of

the power and the standard error of the estimate of the power were calculated
based on 1000 replications of the Monte-Carlo experiment. In the first study
the means were taken to be linear according to the rule u(xi) =8 - i;
i=1,2, ... ,k, k=23,6,9,12; g=1, 1/2, 1/3,..., 1/10,.1/20,...,1/80
andffinally for o = .01 and .05 . Results of this study are given in Tables
1 and 2 and Figures 1 and 2.

As we might reasonably expect, the likelihood ratio statistic beats sz s
often impressively so, as illustrated by Figures 1 and 2. For example for
k=12, B=1/10 and o = .05, T{z’s power is approximately .27 while
the power of the likelihood ratio statistic is still 1 . For alternatives of
this type, the powers of both tests increase as k increases and, of course
as B increases. The case B = 0 corresponds to the null hypothesis
Hi*: u(xi) =0; i=1, 2, ... ,k and, hence, here the.power is an estimate
of the significance level. These estimates of the significance levels for
sz generally underestimate the '"target' significance level as Van Eeden's
theory predicts but in most cases this estimate is within two standard
deviations of the target level.

Since TIZ is based on differences between adjacent sample means one
might reasonably expect it to be more sensitive to alternatives where one or
more of the differences between adjacent population means is large. Table 3

gives estimated power for slippage alternatives of the type u(xz) = u(xs) =

u(xk) = 0 and u(xl) = -1/90, -2/80, -3/70, -4/60, -5/50, -6/40, -7/80,

-8/20 and -9/10 . Table 4 gives further data for slippage alternatives:
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u(xi) = -,35 while u(xj) =0 for j#i; i=1,2, ... ,12 . Also given
in Table 4 is a step type alternative for which u(xi) = -,35 for j <1i and
u(xi) =0 for j>i; i=1, 2, ... ,12 .

In Table 3 the likelihood ratio statistic is more powerful than T;z b
except for u(xi) = -(1/90) or -(2/80) . In these two instances the slippage
is so small that the power is essentially equal to the size of the test. As
expected, the differences in power for sz and the likelihood ratio statistic
in Table 3 are not nearly so dramatic as those in Tables 1 and 2. Heuristically
one might predict this since the likelihood ratio statistic is based on all the
means simultaneously and hence shéuld be more sensitive to the sorts of alter-
natives in Tables 1 and 2 compared to those in Table 3.

We.may, . in Table 4, compare powers as the location, i , of the
slipped mean ranges from 1 through 12 . The power of the likelihood ratio
monotonically decreases with this location shift whereas the power of T;Z
stays relatively constant. For i = 10, 11 sz beats the likelihood ratio
and significantly for i = 11 . Notice that as the location of the slippage
increases the alternative comes closer to satisfying the null and in fact for
i=12, Hi is satisfied so that the powers approximate the size of the test.

Finally for the step alternatives, the likelihood ratio statistic has
~ maximum power near k/2 and its power dscreases in both directions while sz

has essentially constant power. Again notice that the case i = 12 satisfies

H* so we have another estimate of the size of the test.

1
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Power for )
Likelihood Ratio Test Power for T*]*2
Statistic, T]2
k
x 3 6 9 12 3 6 9 12
1 1 1 1 1 1 1 1 1
(0) (0) (0) (0) 0) (0) (0) (0)
1 1 1 1 1 1 1 1 1
Z 0) (0) (0) (0 (0) (0) (0 (0)
1 .997 1 1 1 .910 .999 1 1
3 (.002) (0) (0) (0) .009) .001) 0) (0)
1 .951 1 1 1 .670 .863 .921 .940
4 (.007) (0) 0) ) .015) .011) (.008) (.008)
1 .810 1 1 1 .466 .648 .723 .774
5 (.012) (0) (0 (0) .016) .015) (.014) (.013)
1 .666 1 1 1 .337 .485 .568 .593
6 (.015) (1)) (0) (0) .015) .016) (.016) (.016)
1 .545 1 1 1 .258 .363 .436 .453
7 (.016) 0) () (0) .014) .015) (.016) (.016)
1 .461 .997 1 1 .226 .315 .346 .368
8 (.016) (.002) (0 0) .013) .015) (.015) (.015)
1 .397 .989 1 1 .187 .264 .282 .298
9 (.016) (.003) (0) (0) .012) .014) (.014) (.014)
1 .342 .968 1 1 .170 .229 .244 .269
10 (.015) (.006) ()] (0) .012) .013) (.014) (.014)
1 .151 .461 .887 .997 .076 .110 .114 .121
20 (.011) (.016) (.010) (.002) .008) .010) (.010) (.010)
_l . 096 .233 .552 .856 . 054 .075 .089 .086
30 (.009) (.013) (.016) (.011) .007). .008) (.009) (.009)
1 .087 .181 .362 .614 .050 . 067 .079 .079
40 (.009) (.012) (.015) (.015) .007) .008) (.008) (.008)
1 .081 .151 .240 .416 .055 .059 .074 .073
50 (.009) (.011) (.014) (.016) .007) .008) (.008) (.008)
1 .080 127 .183 .305 .049 . 065 .070 .067
60 (.009) (.010) (.012) (.015) .007) .008) (.008) (.008)
1 .052 .121 .164 .241 .034 .049 .063 .065
70 (.007) (.010) (.012) (.014) . 006) .007) (.008) (.008)
1 .068 .091 .143 .209 .038 .046 .048 .060
80 (.008) {.009) (.011) (.013) . .006) .007) (.007) (.008)
0 .060 .051 .054 .056 .036 .043 .038 .041
(.008) (.007) (.007) (.007) .006) .006) (.006) (.006)

TABLE 1

Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood

ratio test and for the test statistic

alternatives u(xi) =B «i.

T*, . Significance level,

12

.05 and
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Power for T?Z

) k 3 6 9 12 3 6 9 12

i 1 1 1 1. 1 1 1 1
(0) (0) (0) 0) 0 (0) (0) (0)

1 1 1 1 1 .992 1 1 1
2 (0) (0) (0) (0 (.003) (0) (0) (0
1 .983 1 1 1 .642 .901 .955 .973
3 (.004) (0) (0) 0) (.015) .009) .007) .005)
1 .829 1 1 1 .351 .512 .590 .653
) (.012) 0) 0) 0) (.015) .016) .016) .015)
1 .601 1 1 1 .197 .320 .374 .401
5 (.016) (0) ()} 0) (.013) .015) .015) .016)
1 .412 1 1 1 .124 .200 .239 .250
6 {.016) ) (0) (0) (.010) .013) .014) .014)
1 .300 .998 1 1 .088 .124 .148 .161
7 (.014) (.001) (0) 0) (.009) .010) .011) .012)
1 .228 .979 1 1 .065 .095 .107 .119
g (.013) (.004) 0) ()] (.008) .009) .010) .010)
1 .178 .949 1 1 .052 .091 .095 .103
9 (.012) (.007) 0) (0) (.007) .009) .009) .010)
1 .145 .882 1 1 .050 .073 .072 .091
10 (.011) (.010) (0) (0) {.007) .008) .008) .009)
1 .050 .261 .709 .991 .018 .030 .026 .023
20 (.007) (.014) (.014) (.003) (.004) .005) .005) (.005)
1 .027 .075 .301 .694 .009 .016 .018 .020
30 (.005) (.008) (.014) (.015) (.003) .004) .004) .004)
1 .021 .055 .139 .366 .014 .015 .012 .012
40 (.004) (.007) (.007) {.015) (.004) .003) .003) .003)
1 .024 .036 .075 .189 .015 .017 .017 .020
50 (.005) (.006) (.008) (.012) (.004) .004) .004) .004)
1 .023 .042 .063 .127 .007 .018 .018 .015
60 (.005) (.006) (.008) (.010) (.003) .004) .004) .004)
1 .013 .026 . 055 .083 .009 .017 .017 .015
70 (.004) (.005) (.007) {.009) (.003) .004) .004) .004)
1 .010 .023 .037 .075 . 004 .007 .008 .012
80 (.003) (.005) (.006) (.008) (.002) .003) .003) .003)
0 .008 .013 . 009 .009 " . 005 .004 . 005 .005
(.003) (.004) (.003) (.003) (.002) .002) .002) .002)

TABLE 2

Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood

ratio test and the test statistic,

alternatives u(xi) =8 ¢ i.

TIZ .

Significance level,

and




Power for the

Likelihood Ratio Test Power for T?z
Statistic, T12
k .
u(xy) 3 6 9 12 3 6 9 12
(1 .055 .054 .050 .056 .037 .055 .052 .048
90 (.007) | (.007) .007) | (.007) .006) .007) | ¢.007) | (.007)
2 .065 .055 .049 .041 .036 .039 .042 .043
80 (.008) | (.007) .007) | (.006) .006) .006) | (.006) | (.006)
3 .086 .075 1075 .059 .060 .053 .056 .056
70 (.009) | (.008) .008) | (.008) .008) .007) | (.007) | (.007)
4 .115 .085 .081 .072 .064 .053 .055 .048
60 (.010) | (.009) .009) | (.008) .008) .007) | (.007) | (.007)
a=.05{__S .188 .148 .105 .091 .104 .074 .064 .063
50 (.012) | (.011) .010) | (.009) .010) .008) | (.008) | (.008)
__6 277 .229 .189 .168 L1171 .140 116 .099
a0 (.014) | (.013) .012) | (.012) .012) .011) | ¢.010) | (.009)
7 .479 .447 .383 .336 .320 .258. .226 .200
30 (.016) | (.016) ,015) | (.015) .015) .014) | (.013) | (.013)
_ 8 .916 .909 .873 .839 .761 .688 .638 .597
20 (.009) | (.009) .010) | (.012) .014) .015) | (.015) | (.o016)
_9 1 1 1 1 1 1 1 1
10 (0) (0) (0) 0) ()] (0) (0) (0)
(1 .014 .011 .011 .003 .008 .008 .005 .004
~90 (.004) | (.003) .003) | (.002) .003) .003) | (.002) | (.002)
2 .010 .005 .003 .009 .007 .007 ,007 .009
80 (.003) | (.002) .002) | (.003) .003) .003) | (.003) | (.003)
3 .023 .019 .012 .018 .011 .009 .011 .014
~70 (.005) | (.004) .003) | (.004) .003) .003) | (.003) | (.004)
_4 .026 .022 .019 .017 .014 .016 ,020 | .o018
60 (.005) | (.005) .004) | (.004) .004) .004) | (.004) | (.004)
_ 5 .058 .040 .027 .021 027 .023 .014 0.13
a=.01y -%p (.007) | (.007) .005) | (.004) .005) .005) | (.004) | (.004)
6 .101 .087 .069 .051 .057 .040 .031 .027
T30 (.010) | (.009) .,008) | (.007) .007) .006) | (.006) | (.005)
7 .260 .215 .153 .133 . 147 .102 .084 .071
~30 (.014) | (.013) .011) | (.011) .011) .010) | (.009) | (.008)
.8 .757 .742 .694 .633 .550 .483 .440 .409
20 (.014) | (.014) .015) | (.015) .016) .016) | (.016) ] (.016)
) 1 1 1 1 1 1 1 1
|10 0 (0) . (0) (0) (0 (0) (0) (0)
TABLE 3

Monte Carlo estimates of power and standard errors (in parentheses) for the

likelihood ratio test and the test statistic,

u(x;) =0,

i=2

» 3, .

,k and u(xl)

*
T2 >

as indicated.

with slippage alternatives
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Likelihood Ratio Test

Step Alternative

T

%

12 12

i .05 .01 .0S .01 .05 .01 .05 .01
1 .664 .434 .470 272 .664 .434 470 272

(.015) (.016) (.016) (.014) (.015) (.016) (.016) (.014)

2 .640 411 .449 .250 .937 .813 .455 .250

(.015) (.016) (.016) (.014) (.008) (.012) (.016) (.014)

3 .629 . 368 .476 .271 .987 .944 .478 .271

(.015) (.015) (.016) (.014) (.004) (.007) (.016) (.014)

4 .625 . 369 .486 .285 . 995 .981 .489 .285

(.015) (.015) (.016) (.014) (.002) (.004) (.016) (.014)

5 .600 .353 .460 .270 .998 .985 .461 270

(.016) (.015) (.016) (.014) (.001) (.004) (.016) (.014)

6 .558 . 322 .433 .267 1 .988 .435 .269

(.016) (.015) (.016) (.014) 0) (.003) (.016) (.014)

7 .520 , 297 .459 . 262 .995 .977 .461 .262

(.016) (.014) (.016) (.014) (.002) (.005) (.016) (.014)

3 .529 .275 .449 - ,249 .996 .988 .450 .249

(.016) (.014) (.016) (.014) (.002) (.003) (.016) (.014)

9 .483 . 255 .468 .243 .990 .950 470 .243

(.016) (.014) (.016) (.014) (.003) (.007) (.016) (.014)

10 .411 .205 .447 .253 .927 .813 .449 . 253
(.016) (.013) (.016) (.014) (.008) (.012) (.016) (.014)

11 ,293 .124 .438 .268 . 667 .430 .442 .268
(.014) (.010) . (.016) (.014) (.015) (.01e6) (.016) (.014)

12 .030 . 008 - .051 .012 .056 . 009 .058 014
(.005) (.003) (.007) (.003) (.007) (.003) (.007) (.004)

TABLE 4

Monte Carlo estimates of power and standard error (in parentheses) for the likelihood

ratio test and the test statistic,

or slippage of jump is

-.35 and k

T*_, with slippage or step located at i .

12

is 12 .

Size
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Statistic, T and for T¥ = ,01l and k =3 .

12 12 - ¢



-11-

12

*
P

01 e e

I I ]

1 1
1 5 3

| AL

-
U]
| =

!

FIGURE 2

Power as a function of B8 (u(xi) =8 - i) for the Likelihood Ratio Test Statistic,

T12 and for TIZ . o=,01 and k=12 .
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3. Tests of Trend for an Exponential Class of Distributions: Now let us turn

our attention to extensions of the likelihood ratio test to distributions of
the exponential type. Suppose v(°) is a o-finite measure on the Borel sub-
sets of the real line and consider a regular exponential family of distributions

defined by the probability densities of the form

(3.1) £(x; 8,1) = exp[pl(e)pz(r)K(x) + S(x,7) + q(8;7)] ;
9 e (61,62) and 1€ T

with respect to y and with -« < 0) <6y s . We make the following

assumptions:

(3.2) pl(o) and q(°;t) both have continuous second derivafives on (91,62)

for all te T,

(3.3) p}(e) >0 for all 6 ¢ (61,62) R pz(r) >0 forall te T

and
(3.4) q'(8;1) = -Gpi(e)pz(T) for all 6 ¢ (61,92) and Tt e T.

We are thinking of 1 as fixed so that allrderivatives are with respect to © .
If X is any random variable having density function f£(x; 6,t) then using
Theorem 9 on page 52 of Lehmann (1959), the integral, I f(x; 8,1)dy(x) =1,
can be twice differentiated, with respect to 6 , under the integral sign,

obtaining E[K(X)] = 6 and V[K(X)] = [p}(0)p,(0)]"! .
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Suppose we have independent random samples from each of k populations
belonging to the above exponential family where the iEh-population has para-

meters e(xi) and Ty ( ™ is known). Let the items of the random sample

from the izh»population be denoted by X; j=1,2, ... STy and suppose <<

T
{xl, Xps ees ,xk} . Consider the following

is a partial order on 8§

hypothesés:

Hyt 0(x;) = 8(x)) = ... = 0(x) ,

le 6(°) 1is isotone with respect to <<

and Hz places the restriction on 6(°) . We consider a likelihood ratio
statistic for testing Hy against Hy - H1 . The maximum likelihood estimate

-1 ¢t
. Zj=1 K(Xj4)

of 6(<) under H2 is given by 8(e) where §(xi) =n,

Furthermore, the maximum likelihood estimate of the common value of 6(°) under

HO is given by
0 = [ffuy nsPp ()17« Iiny mypp(rpe,

so that from Robertson and Wright (1975) it follows that the maximum likelihood
estimaté of 06(°) under H1 is 8(°) = E[é(o)lL] where L is the o-lattice
of subsets of S induced by << (cf, Barlow et. al. (1972)). The expectation
is taken with respect to the space (S, ZS, 8) where &8 is the prcbgbility
measure on the collection, ZS , of all subsets of S which assigns mass

ng © pylry) ¢ [Z§=1 njpz(rj)] to the singleton {xi} . Maximum 1ikelihood
estimation of parameters of distributions belonging to an exponential family

were first discussed by Brunk (1955). For a discussion of this and related
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work see Barlow et. al. (1972).
If 112 is the likelihood ratio for testing Hl against H2 - H1 and

12 = -21n>\12 then

le =2 Z§=1 {nié(xi)pz(ri)[pl(acxi)) - p1(§txi))] + niIQ(é(xi)E Ti)
- q(f(x); )1}

Expanding p1(°) and q(°; Ti) about é(xi) by using Taylor's Theorem with
second degree remainder term and substituting for p1f§txi)) and qu(xi); Ti)

we obtain

le = 2 Z§=1 {[niécxi)pzcri)pi[écxi)) + niq‘(5(xi); 7)1 - (Flxp - g(xi))

- [nie(xi)PZ(Ti)Pf'(ai) ° 2-1 + niq" (Bi; Ti) ° 2-1]

o [8(xy) - 6(x)1°

where oy and Bi converge almost surely to e(xi) . This convergence follows
from well-known properties of §Ixi) and e(xi) . Now from (3.4),

q (5(xi);ti) = -é(xi)pi(é(xi))pz(ri) so that
(3.5) le = 'zlj;]_ ni[écxi)chTi)P'l' (O‘i) + qﬁ (Bi; Ti)]"" [E(xl) - a(xi)lz .
Theorem 3.1. If f(x:6,7) is of the form (3.1) where p1(°) and q(-;T)

satisfy (3.2) - (3.4) and if e(xl) = Q(xz) = ,,, = e(xk) and n; =n, = ...

=n =n thenas n=» o ,

T2 5 Z§=1 p,(r ) [E(X() L) (%) - x(xi)]2
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/
where x(xl), x(xz), ces ,X(xk) are independent normal random variables having
zero means end V(x(xij) - pztri)'1 . The expectation E(X()|L) is taken
regarding X(¢) as a function on the space (S, 25, §) . (Note that

8C{xy = py(ry) * Ig py(rp) )

Proof: Let the common value of 6(°) be 90 . Then from (3.5), using well~

known properties of the conditional expectation operator
k -~
Tp = -Liag (0GP (apy(r;) + q" (B;5 15)]

R . 2
. I—E[/ﬁ (e¢) - eo)lL] (x;) - /n (6(x;) - 8y) ] .

Now e(xi) is the sample mean of i.i.d. random variables having means 8o and
variances [ﬁi(eo) . pz(Ti)]-l < ® , ‘Let- Zn be the -2k- dimensional.réndom

vector defined by

Zni

0(x;)p] (o,)p,(ty) + q" (855 1)) 3 oi=1,2, ... 0k

"

Jﬁ[e(xi_k) -0y 5 1=kl k+2, ... 2.

Using the Law of Large Numbers, the Central Limit Theorem and Theorem 4.4 of

> ) ->
Billingsley (1968), Zn converges weakly to Z where

= t 1 . « 3=
Zi = eopl (eo)chTi) + q (90, Ti) s 1 1’ 2, s0e sk
= Y(xi-k) ;s i=k+1, k+2, ... ,2k

where Y(xl), Y(xz), v ,Y(xk) are independent normal random variables having

zero means and V(Y(xi)) = [pi(eo)pz('ri)]'l . The conditional expectation
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i +
operator is continuous so that le is a continuous function of Zn . It

follows from Corollary 1 of Theorem 5.1 of Billingsley (1968) that
T, 5 TK et (0)p,(ty) + " (85 TITEN(I L) (xp) - ¥(x,)1
12 i=1 %P1 Pp/P2lTy) * @ Ui T4 i il

The desired result now follows since q" (60; Ti) = -eopy (GO)PZ(Ti) -

pi(eo)pz(Ti) from (3.4).

Theorem 5 of Robertson and Wegman (1975) now yields

Corollary 3.2. If the hypotheses of Theorem 3.1 are satisfied then for each

real number ¢t
lim  P[T., 2t] = JX _ P[x% , 2 t] ¢ P(2,K)
oo 12 = e=1 FXkog >

where Xi-l is a xz random variable having k - & degrees freedom and as in
Barlow et. al. (1972). P(2,k) is the probability that E(X(«)IL) takes on %
levels. The probabilities P(2,k) depend on the partial order << and on the

weights pz(ri) .

We now show that Corollary 3.2 provides the large sample approximation to
the critical level for testing H1 against H2 - H1 . As with the proof of
Theorem 2 of Robertson and Wegman (1975) this property is a consequence of the
fact that our isotonic estimators can be viewed as projections on closed convex
cones in the Hilbert space of all functions on S = {xl, Xy ees ,xk} with
inner product defined by [Y(o), n(o)) = z¥=1 y(xi) ° n(xi)wi and
W, = nipz(Ti) + Z?=1 njpz(rj) . Suppose 6(¢) satisfies Hl but not HO .

let Vis Voo eee sV be the distinct values among e(xl), e(xz), ces ,G(Xk)
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and let §, = {xj; e(xj) = Vi} ; i=1,2, ... ,H. Define the partial order .
€< on S by x, < Xg if and only if x, << Xg and Xys Xg € Si for some

i . Let L(6) be the o-lattice of subsets of S induced by << and let
I(8)(I) be the collection of all functions on S which are isotone with
respect to =<(<<) ., The collection I(6)(I) is a closed convex cone in the
Hilbert space of all functions on S and E(ncn)fL(e)) [E(n(°)|L)] is the

p:ojection on I(8)(I) in this space (cf. Brunk (1965)). Furthermore
(3.6) I c 1(8)

and using Corollary 2.3 of Brunk (1965), if E{(n(°)[L(8)} e I  then

E(n()[L(®)) = E{n(-) L) .

Lemma 3.3. If minxiESl n(xi) 2 maxxiESZ n(xi) 2 mmx_es2 n(xi) >

1
ma n(xg) 2 ... 2 maxy s, n(x;) then E{n(:)|L(8)) = E(n()|L) .

b
xieS3

Proof: It suffices to show that E(n(v)lL(e)) e I . Suppose
$(°) = E(n(°)|L(e)) and x, << Xg If Xys Xg € Si for somé i then

X, << x, and ¢(xa) < ¢(x6) . Suppose x, € Si s Xg € Sj and i=23j .

]
Since 6(°) 1is isotone with respect to << the sets S1 + 32 + ... * Si and

S1 + S2 + ...+ Sj are in L so Xgee S1 + S2 S R Si and therefore
i>3j . Now ¢(xa)(¢(xs)) is an average of the values of n(°) at points in
Si(sj) S0

¢(xa) < max eSi n(xz) £ min

nlxg) < 9(xg)
%

xxeSJ

and ¢(°) ¢ I .
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" For any 0(°) let Pe(E) be the probability of the event E computed
under the assumption that 0(°) is the true vector of parameter values and let

PO(E) be the probability of E computed under H0 .

Theorem 3.4. If 6(e) satisfies Hy and n =0, = ...=n =1 then

1im Pe[le 2 t] < im PO[T12 2 t] .

Proof: Define <<, L(6) and the sets Sl’ Sz, ..+ »8, as before. Now

e(xi) 2.5., e(xi) o for sufficiently large n with probability one

minxg'eSl e(xz) 2 maxx_ies2 e(xz) 2 ... 2 maxxﬂ't,_s‘h 9(xz) and from (3.5) and
Lemma 3.3

T, = -JX  a[80x)p" (:)p,(r;) + q" (.3 1)1 ¢ [E(OC)|LO)) (xy) - 8(x:)]1?
12 i=1 $JP7 Lo JPotty) + a7 By T4 i ild

for sufficiently large n with probability one. Using an argument similar to

the one used for Theorem 3.1 we obtain
2
T12 k Xli(_=1 PZCTi) [E(X(°)IL(6)) (xl) = x(xi)]

where X(°) is defined as in Theorem 3.1. Here it is necessary to use the
fact that pi(9(°)) is positive and constant on the sets §,, Sz,‘... »Sh -

The desired result follows from (3.6) since

15 Pyt E(X()L®) () - X(x)1% = |[E(XC){L®) - x(=) ][

iA

[E(XC) L) - xC) |2

= Iia P BROID &) - xx 12
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It seems clear that the hypothesis Ny =N, = ... =0 could be relaxed.
It was required to take n inside the conditional expectation. However, the
measure on 2° ,on'which the expectations depend, also depends on n, so that
such a relaxation would still require some assumption about the way the ni’s
go to infinity.

Likelihood ratio tests for testing H0 against H1 are discussed in
Barlow et. al. (1972). However we have been unable to find an analogue to

Theorem 3.1 for this test. An argument similar to the argument given for

Theorem 3.1 yields

= -21nA01

and assume the hypotheses of Theorem 3.1 are

Theorem 3.5. Let T where Aog is the likelihood ratio for

01

testing HO against H1

satisfied. Thgn
1, 5 15 b e E(X() D) (xy) - X1
01~ Li=1 P27 i
where X = Z§=1 P, (7;)X(x;) % ) §=1 p,(t;) and X(°) is as in Theorem 3.1.

Corollary 3.6. If the hypotheses of Theorem 3.1 are satisfied then

. k 2
Ilmn»m P[T01 2t} = =1 P[Xz-l 2 t]P(%,k)

for all t (cf. Theorem 3.1 of Barlow et. al. (1972)).

In closing it is worthwhile to point out that among families with densities
of the form given by (3.1) are the Normal, Binomial, Poisson and Exponential

families. In particular, in the normal case if the u(xi) are known and
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e(xi) is taken to be oz(xi) , then one may form likelihood ratio tests for
trend in the variance. Such a test is useful in the analysis of residuals
ocedure to determine, for example, if there
hence if weighted least squares is appropriate.

isotonized variance estimate can be used to

hted least squares procedure.
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