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ABSTRACT
This report is on a continuation of the work discussed in Robertson and

Wegman (1975). The results of a Monte-Carlo study of the power of the 1ike1i-

hood ratio statistic considered in the previous paper are discussed. The

asymptotic distributions for the likelihood ratio statistics for testing homo-

geneity against trend and trend against "otherwise" when the sampled distri-

butions belong to an exponential family are given.
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1. Introduction: This report is on a continuation of the work discussed in

Robertson and Wegman (1975). In Section 2 we discuss the results of a Monte

Car~ostudy of the power of the likelihood ratio statistic considered in the

previous paper. In order to be able to make comparisons we included in this

study a statistic proposed by Van Eoden (1958) for testing the same hypothesis.

In Section 3, we also consider tests for trend in parameters when the

parameters involved arise from a distribution of the exponential type. The

distribution for the likelihood ratio statistic for testing a trend hypothesis

about normal means is shown to be the asymptotic distribution for the likeli-

hood ratio statistic for an analogous test whenever the sampled distributions

are members of the exponential family.

2. Monte Carlo Study: In this section, we report the results of a Monte

Carlo study of the power of the likelihood ratio statistic considered by

Robertson and Wegman (1975). Following the notation of Barlow, Bartholomew,

Bremner and Brunk (1972), suppose we have independent random samples from

each of k normal populations indexed by Xi: i = 1, 2, ,k. Suppose

~(Xi) is the mean of the population indexed by Xi and « is a partial

order on S ={Xl' x2, ••. ,Xk}. A function reo) on S is isotone pro

vided r(x.):s r(x.) whenever x. «"x.... Robertson and Wegman consider the
1. J 1..J

likelihood ratio for testing the null hypothesis
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versus H2 - HI where HZ places no restriction on ~(o). In this Monte

Carlo study, we restrict our attention to a null hypothesis which specifies a

linear order, i.e. Hi: ~(xl) ~ ~(xz) ~ ••• ~ ~(xk) • We also take the

variances a2(x.) to be one and draw the same number of items from each
1

population. Computation of the likelihood ratio test statistic is discussed

and a taple of critical values for this null hypothesis is given in Robertson

and Wegman.

Van Eeden (1958) proposed another statistic for testing Hi against

H2 - Hi ' namely Tiz =maxlSiSk_l (X(Xi +l ) - X(xi )) where X(xi ) is the

sample mean of the i th population. Let a be a "target" significance level

and let a* =a/(k - 1) • TIle critical point for Van Eeden's test when

aZ(x.) = 1 is
1

where n is the number of observations made on each population and where ~ *a

is defined by
2

e-~ dx = a* •(1/121r) I~
~a*

The true significance level aO = sUP~(o)eff* P[Ti2 ~ ta*I~(o)] is bounded
1

above by a and below by a - ~a2 For this study we chose a = .05 and

.01 so that .04875 S aO S .05 for a = .05 and .00995 S aO S .01 for

a = .01 •

Normal pseudo-random variates were generated according to the well-known

Box-Mueller transform and sample means, X(xi ) 0' based on n = 100 were
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calculated. For three different types of alternate hypotheses estimates of

the power and the standard error of the estimate of the power were calculated

based on 1000 replications of the Monte-Carlo experiment. In the first study

the means were taken to be linear according to the rule ~(xi) =e Q i ;

i = 1, 2, ••. ,k, k = 3, 6, 9, 12; B =1, 1/2, 1/3, •.. , 1/JO,,1/20~ ••• ,1/80

andOfinally for a = .01 and .05. Results of this study are given in Tables

1 and 2 and Figures 1 and 2.

As we might reasonably expect, the likelihood ratio statistic beats Ti2'

often impressively so, as illustrated by Figures 1 and 2. For example for

k = 12, a = 1/10 and a = .05, Ti2's power is approximately .27 while

the power of the likelihood ratio statistic is still 1. For alternatives of

this type, the powers of both tests increase as k increases and, of course

as a increases. The case a =0 corresponds to the null hypothesis

Hi*: ~(xi) = 0; i = 1, 2, ••• ,k and, hence, here the.~ower is an estimate

of the significance level. These estimates of the significance levels for

Tiz generally underestimate the "target" significance level as Van Eeden's

theory predicts but in most cases this estimate is within two standard

deviations of the target level.

Since Ti2 is based on differences between adjacent sample means one

might reasonably expect it to be more sensitive to alternatives where one or

more of the differences between adjacent population means is large. Table 3

gives estimated power for slippage alternatives of the type ~(x2) = ~(x3) =
••• - ~(~) = 0 and ~(xl) = -1/90, -2/80, -3/70, -4/60, -5/50, -6/40, -7/80,

-8/20 and -9/10. Table 4 gives further data for slippage alternatives:
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p(Xi ) = -.35 while U(Xj ) = 0 for j ~ i; i =1, 2, ••• ,12. Also given

in Table 4 is a step type alternative for which p(xi ) =-.35 for j S i and

P (xi) = 0 for j > i; i = 1, 2, ••• ,12 •

In Table 3 the likelihood ratio statistic is more powerful than Ti2 .':'-. ./

except for p(xi ) = -(1/90) or -(2/80). In these two instances the slippage

is so small that the power is essentially equal to the size of the test. As

expected, the differences in power for Ti2 and the likelihood ratio statistic

in Table 3 are not nearly so dramatic as those in Tables 1 and 2. Heuristically

one might predict this since the likelihood ratio statistic is based on all the

means simultaneously and hence should be more sensitive to the sorts of alter

natives in Tables 1 and 2 compared to those in Table 3.

l~e. may, in Table 4, compare powers as the location, i, of the

slipped mean ranges from I through 12. The power of the likelihood ratio

monotonically decreases with this location shift whereas the power of Ti2

stays relatively constant. For i = 10, 11 Ti2 beats the likelihood ratio

and significantly for i =11. Notice that as the location of the slippage

increases the alternative comes closer to satisfying the null and in fact for

i = 12, Hi is satisfied so that the powers approximate the size of the test.

Finally for the step alternatives, the likelihood ratio statistic has

maximum power near k/2 and its power decreases in both directions while Ti2

has essentially constant power. Again notice that the case i =12 satisfies

Hi so we have another estimate of the size of the test.
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Power for
Likelihood Ratio Test Power for Ti2

Statistic. T12

~ 3 6 9 12 3 6 9 12

1 1 1 1 1 1 1 1 1
(0) (0) (0) (0) (0) (0) (0) (0)

1 1 1 1 1 1 1 1 1
2 (0) (0) (0) (0) (0) (0) (0) (0)

1 .997 1 1 1 .910 .999 1 1
"3 (.002) (0) (0) (0) (.009) (.001) (0) (0)

1 .951 1 1 1 .670 .863 .921 .940
4" (.007) (0) (0) (0) (.015) (.011 ) (.008) (.008)

1 .810 1 1 1 .466 .648 .723 .774
5 (.012) (0) (0) (0) (.016) (.015) (.014) (.013)

1 .666 1 1 1 .337 .485 .568 .593
6" (.015) (0) (0) (0) (.015) (.016) (.016) (.016)

1 .545 1 1 1 .258 .363 .436 .453
7" (.016) (0) (0) (0) (.014) (.015) (.016) (.016)

1 .461 .997 1 1 .226 .315 .346 .368
8" (.016) C·002) (0) (0) (.013) (.015) (.015) (.015)

1 .397 .989 1 1 .187 .264 .282 .298
9 (.016) (.003) (0) (0) (.012) (.014) (.014 ) (.014)

1 .342 .968 1 1 .170 .229 .244 .269
TO (.015) (.006) (0) (0) (.012) (.013) (.014) (.014)

1 .151 .461 .887 .997 .076 .110 .114 .121
20 (.011) (.016) (.010) (.002) (.008) (.010) (.010) (.010)

1 .096 .233 .552 .856 .054 .075 .089 .086
30 (.009) (.013) (.016) (.011) (.007) (.008) (.009) (.009)

1 .087 .181 .362 .614 .050 .067 .079 .079
40 (.009) (.012) (.015) (.015) (.007) (.008) (.008) (.008)

1 .081 .151 .240 .416 .055 .059 .074 .073
50 (.009) (.011 ) • (.014) (.016) (.007) (.008) (.008) (.008)

1 .080 .127 .183 .305 .049 .065 .070 .067
60 (.009) (.010) (.012) (.015) (.007) (.008) (.008) (.008)

1 .052 .121 .164 .241 .034 .049 .063 .065
70 (.007) (.010) (.012) (.014) (.006) (.007) (.008) (.008)

1 .068 .091 .143 .209 .038 .046 .048 .060
80 (.008) (.009) (. Oll) (.013) :. (.006) (.007) (.007) (.008)

0 .060 .051 .054 .056 .036 .043 .038 .041
(.008) (.007) (.007) (.007) (.006) (.006) (.006) (.006)

TABLE 1
Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood

ratio test and for the test statistic Tiz, Significance level, a = .05 and

alternatives ~(xi) = B • i •
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Power for
Likelihood Ratio Test Power for Tt2

Statistic, T12

~ 3 6 9 12 3 6 9 12

1
1 1 1 1 1 1 1 1

(0) (0) (0) (0) (0) (0) (0) (0)

1 1 1 1 1 .992 1 1 1
2" (0) (0) (0) (0) (.003) (0) (0) (0)

1 .983 1 1 1 .642 .901 .955 .973
3" (.004) (0) (0) (0) (.015) (.009) (.007) (.005)

1 .829 1 1 1 .351 .512 .590 .653

4" (.012) (0) (0) (0) (.015) (.016) (.016) (.015)

1 .601 1 1 1 .197 .320 .374 .401

5 (.016) (0) (0) (0) (.013) (.015) (.015) (.016)

1 .412 1 1 1 .124 .200 .239 .250

6" (.016) (0) (0) (0) (.010) (.013) (.014) (.014 )

1 .300 .998 1 1 .088 .124 .148 .161

7" (.014) (.001) (0) (0) ( .009) (.010) (.011) (.012)

1 .228 .979 1 1 .065 .095 .107 .119

8" (.013) (.004) (0) (0) (.008) (.009) (.010) (.010)

1 .178 .949 1 1 .052 .091 .095 .103

9 (.012) (.007) (0) (0) (.007) (.009) (.009) (.010)

1 .145 .882 1 1 .050 .073 .072 .091

10 (.011 ) (.010) (0) (0) (.007) (.008) (.008) (.009)

1 .050 .261 .709 .991 .018 .030 .026 .023

20 (.007) (.014) (.014 ) (.003) (.004) (.005) (.005) (.005)

1 .027 .075 .301 .694 .009 .016 .018 .020

30 (.005) (.008) (.014 ) (.015) (.003) (.004) (. 004) (.004 )

1 .021 .055 .139 .366 .014 .015 .012 .012

40 (.004) (.007) (.007) (.015) (.004 ) (.003) (.003) (.003)

1 .024 .036 .075 .189 .015 .017 .017 .020

SO (.005) (.006) I
(.008) (.012) (.004) (.004) (.004 ) (.004)

1 .023 .042 .063 .127 .007 .018 .018 .015

60 (.005) (.006) (.008) (.010) (. 003) (.004) (.004) (.004)

1 .013 .026 .055 .083 .009 .017 .017 .015

70 (.004) (.005) (.007) (.009) (.003) (.004 ) (.004 ) (.004)

1 .010 .023 .037 .075 .004 .007 .008 .012

80 (.003) (.005) (.006) (.008) (.002) (.003) (.003) (.003)

0 .008 .013 .009 .009··· .005 .004 .005 .005·

(.003) (.004) (.003) (.003) (.002) (.002) (.002) (.002)

TABLE 2
Monte Carlo estimates of power and standard errors (in parentheses) for the likelihood

ratio test and the test statistic, Ti2' Significance level, a = .01 and

alternatives ~(xi) = e • i .
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Power for Ti2
Power for the

Likelihood Ratio Test
St ti t' T

u(x~
a s le. 12

3 6 9 12 3 6 9 12

1 .055 .054 .050 .056 .037 .055 .052 .048
- 90 (.007) (.007) (.007) (.007) (.006) (.007) (.007) (.007)

2 .065 .055 .049 .041 .036 .039 .042 .043
- 80 (.008) (.007) (.007) (.006) (.006) (.006) (.006 ) (.006)

3 .086 .075 ;075 .059 .060 .053 .056 .056
-70 (.009) (.008) (.008) (.008) (.008) (.007) (.007) (.007)

4 .115 .085 .081 .072 .064 .053 .055 .048
- 60 (.010) (.009) (.009) (.008) (.008) (.007) (.007) (.007)

a-.05 5 .188 .148 .105 .091 .104 .074 .064 .063
- SO (.012) (.011) (.010) (.009) (.010) (.008) (.008) (.008)

6 .277 .229 .189 .168 .171 .140 .116 .099
-40 (.014) (.013) (.012) (.012) (.012) (.011) (.010) ( .009)

7 .479 .447 .383 .336 .320 .258 .226 .200
- 30 (.016) (.016) (.015) (.015) (.015) (.014) (.013) (.013)

8 .916 .909 .873 .839 .761 .688 .638 .597
- 20 (.009) (.009) (.010) (.012) (.014) (.015) (.015) (.016)

9 1 1 1 1 1 1 1 1
- 10 (0) (0) (0) (0) (0) (0) (0) (0)

1 .014 .011 .Oll .003 .008 .008 .005 .004
- 90 (.004) (.003) (.003) (.002) (.003) (.003) (.002) (.002)

2 .010 .005 .003 .009 .007 .007 .007 .009
- 80 (.003) (.002 ) (.002) (.003) (.003) (.003) (.003) (.003)

3 .023 .019 .012 .018 .011 .009 .Oll .014
-70 (.005) (.004) (.003) (.004) (.003) (.003) (.003) (.004)

4 .026 .022 .019 .017 .014 .016 .020 .018
- 60 (. DOS) (.005) (.004) (.004) (.004 ) (.004 ) (.004) (.004)

5 .058 .040 .027 .021 .027 .023 .014 0.13
a=.Ol - 50 (.007) (.007) (.005) (.004) (.005) (.005) (.004) (.004)

6 .101 .087 .069 .051 .057 .040 .031 .027
- 40 (.010)' (.009) (.008) (.007) (.007) (.006) (.006) (.005)

7 .260 .215 .153 .133 .147 .102 .084 .071
- 30 (.014) (.013) (.Oll) (.Oll) (.011) (.010) (.009) (.008)

8 .757 .742 .694 .633 .550 .483 .440 .409
- 20 (.014) (.014) (.015) (.015) (.016) (.016) (.016 ) (.016 )

9 1 1 1 1 1 1 1 1
- 10 (0) (0) (0) (0) (0) (0) (0) (0)

.-

..

TABLE 3
Monte Carlo estimates of power and standard errors (in parentheses) for the

likelihood ratio test and the test statistic, Ti2' with slippage alternatives

~(xi) = 0, i = 2, 3, .. , ,k and ~(xl) as indicated.
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Step Alternative

,

Likelihood Ratio Test Tr2 Likelihood Ratio Test Tr2

~ .05 .01 .05 .01 .05 .01 .05 .01

1 .664 .434 .470 .272 .664 .434 .470 .272
(.015) (.016) (.016) (.014) (.015) (.016) (.016) (.014)

2 .640 .411 .449 .250 .937 .813 .455 .250
(.015) (.016) (.016) (.014 ) (.008) (.012) (.016) (.014)

3 .629 .368 .476 .271 .987 .944 .478 .271
(.015) (.015) (.016) (.014) (.004) (.007) (.016) (.014)

4 .625 .369 .486 .285 .995 .981 .489 .285
(.015) (.015) (.016) (.014) (.002) (.004) (.016) (.014)

5 .600 .353 .460 .270 .998 .985 .461 .270
(.016) (.015) (.016) (.014) (.001 ) (.004) (.016) (.014)

6 .558 .322 .433 .267 1 .988 .435 .269
(.016) (.015) (.016) (.014) (0) (.003) (.016) (.014)

7 .520 .297 .459 .262 .995 .977 .461 .262
(.016) (.014) (.016) (.014) (.002) (.005) (.016) (.014)

8 .529 .275 .449 - .249 .996 .988 .450 .249
(.016) (.014) (.016) (.014) (.002) (.003) (.016) (.014 )

9 .483 .255 .468 .243 .990 .950 .470 .243
(.016) (.014) (.016) (.014) (.003) (.007) (.016) (.014)

10 .411 .205 .447 .253 .927 .813 .449 .253
(.016) (.013) (.016) (.014) (.008) (.012) (.016) (.014)

11 .293 .124 .438 .268 .667 .430 .442 .268
(.014) (.010) , (.016) (.014 ) (.015) (.016) (.016) (.014)

12 .030 .008 .051 .012 .056 .009 .058 .014
(.005) (.003) (.007) (.003) (.007) (.003) (.007) (.004)

TABLE 4

Monte Carlo estimates of power and standard error (in parentheses) for the likelihood

ratio test and the test statistic, Ti2 with slippage or step located at i. Size

or slippage of jump is -.35 and k is 12.
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Power as a function of S (~(xi) = S • i) for the Likelihood Ratio Test

Statistic, T12 and for Ti2. a = .01 and k = 3 .



-11-

1

.9

.8

.7

.6

.5

.4

.3

.2

.1

.01

1 1
'2

1 1 1 1 1 1
3" !4 56 8 10

FIGURE 2

1
20

1 1 111
30 40 60 80 100

Power as a function of S (~(X.)
1

T12 and for Tiz, a. = .01 and

= S • i)
k = 12 .

for the Likelihood Ratio Test Statistic,
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3. Tests of Trend for an ExponeDt~al Class of Distributions: Now let us turn

our attention to extensions of the likelihood ratio test to distributions of

the exponential type. Suppose yeo) is a a-finite measure on the Borel sub-

sets of the real line and consider a regular exponential family of distributions

defined by the probability densities of the form

(3.1) f(x; e,T) = exp[Pl(a)P2(T)K(x) + S(X~T) + q(a;T)]

6 € (6l ,6Z) and T ~ T

with respect to y and with -~ s al < aZ s ~. We make the following

assumptions:

(3.2) PI (0) and q(o;T) both have continuous second derivatives on (61,62)

for all T ~ T.,

and

We are thinking of T as fixed so that all derivatives are with respect to e •

If X is any random variable having density function f(x; e,T) then using

Theorem 9 on page 52 of Lehmann (1959), the integral, f f(x; e,T)dy(x) =I ,

can be twice differentiated, with respect to a, under the integral sign~

-1obtaining E[K(X)] =e and V[K(X)] = [Pl(a)PZ(T)] .
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Suppose we have independent random samples from each of k populations

b 1 . t h b ·'1 f ·1 h th .th 1 t· he onglng 0 tea ove exponent14 aml y were e 1-- popu a lon as para-

meters G(xi ) and Ti (Ti is known). Let the items of the random sample

from the i th population be denoted by X.. : j = 1, 2, ••• ,nl. and suppose «
IJ

is a partial order on 8 ={Xl' x2' ••• ,xk}. Consider the following

hypotheses:

HI: SeQ) is isotone with respect to «

and HZ places the restriction on S(Q). We consider a likelihood ratio

statistic for testing HI against H2 - HI •

of G(o) under H2 is given by G(o) where

Furthermore, the maximum

The maximum likelihood estimate
1 n.

e(x.) =n: r. l

l K(X.
J
.) •

1 1 J= 1

likelihood estimate of the common value of a(o) under

HO is given by

~ -1 k ~

GO = [~ I n.P2(T.)] .~. 1 n.P2(T.)S.Li= 1 1 L1= 1 1 1

so that from Robertson and Wright (1975) it follows that the maximum likelihood

estimate of G(Q) under HI is a(o) = E[e(o)IL] where L is the a-lattice

of subsets of 8 induced by « (cf. Barlow et. al. (1972)). The expectation

Sis taken with respect to the space (8, 2 , 0) where 0 is the probability

measure on the collection, 28 , of all subsets of S which assigns mass

n. 0 P2(T.) t [L~ I n.P2(T.)] to the singleton {Xl.}. Maximum likelihood
1 1 J= J J

estimation of parameters of distributions belonging to an exponential family

were first discussed by Brunk (1955). For a discussion of this and related
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work see Barlow et. al. (1972).

If A12 is the likelihood ratio for testing Hi against HZ - Hi and

T12 = -2lnA12 then

"Expanding Pl(o) anq q(o; Ti ) about e(xi ) by using Taylor's Theorem with

second degree remainder term and substituting for PI (iB(xi )) and q(ieexi ); Ti )

we obtain

- [n.e(x')P2 eT .)P'lt ea.) 0 2-1 + n.q" (8.; T.) 0 2-1]
111 1 111

- " 2o [e(x.) - e(x.)]
1 1

where ai and 8i converge almost surely to 0(xi ) • This convergence follows

"from well-known properties of 6(Xi ) and eexi) • Now from (3.4),

q (e(xi);Ti ) = -6exi)pi(S(Xi))P2(Ti) so that

Theorem 3.1. If f(x;e,T) is of the form (3.1) where Pl(o) and q(o;T)

satisfy (3.2) - (3.4) and if 6(Xl ) = ~ex2) = ... =e(xk) and nl =n2 = •••
= nk = n then as n -+ 00 ,



-15-

}

where X(x
1
), X(X2), ••• ,X(xk) are independent normal random variables having

zero means and v(xex1)) ~ pz(Ti )-l. The expectation E(X(o)IL) is taken

regarding X(o) as a function on the space (5, 25 , ~). (Note that

~({x.}) = PZ(T.) t r~ 1 PZ(T.) .)
1 1 J= J

Proof: Let the cornmon value of 6(0) be 60 , Then from (3.5), using well

known properties of the conditional expectation operator

~k ["''' "T12 = -Li-l 6(xi )Pl (ai )P2(Ti ) + q (Si; Ti )]

o [ E(1ii (a(o) - eO) IL) (Xi) - Iii (a(xi ) - 60) J2 •

"
Now 8 (Xi)

variances

is the sample mean of i.i.d. random variables having means eO and

I -1· .[pi (6
0

) • Pz (Ti )] , < 0<) • Let·, Zn be the .2k·· dimensional ,random

vector defined by

...
Zni = 6(xi )P1'(ai )pz(Ti ) + q" (Sii T i ) ; i = I, 2, ••. ,k

Using the Law of Large Numbers, the Central Limit Theorem and Theorem 4.4 of
+ +

Billingsley (1968), Zn converges weakly to Z where

= Y(x. k); i =k + 1, k + 2, ..• ,Zk
1-

where Y(x1), Y(xZ)' ••• ,Y(xk) are independent normal random variables having,

zero means and V(Y(xi ») = [pi(60)P2(Ti )]-1. The conditional expectation
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+
operator is continuous so that T12 is a continuous function of Zn It

follows from Corollary 1 of Theorem 5.1 of Billingsley (1968) that

The desired result now follows since q" (60 ; Ti ) = -eoPl (eO)P2(Ti ) 

pi (60)P2(Ti ) from (3.4).

Theorem 5 of Robertson and Wegman (1975) now yields

Corollary 3.2. If the hypotheses of Theorem 3.1 are satisfied then for each

real number t

where X~_t is a x2 random variable having k - t degrees freedom and as in

Barlow et. al. (1972). P(t,k) is the probability that E(X(o)IL) takes on t

levels. The probabilities P(t,k) depend on the partial order « and on the

We now show that Corollary 3.2 provides the large sample approximation to

the critical level for testing HI against HZ - HI' As with the proof of

Theorem Z of Robertson and Wegman (1975) this property is a consequence of the

fact that our isotonic estimators can be viewed as projections on closed convex

cones in the Hilbert space of all functions on S ={Xl' x2' ••• ,xk} with

inner product defined by (y(o), nCo)) = L~=l Y(xi ) 0 n(xi)wi and

w. = n·P2(T.) + r~ 1 n.PZ(T j ) • Suppose 6(0) satisfies HI but not Ho '
1 1 1 J= J

let VI' v2' ••• ,vh be the distinct values among 6(xl ), 6(X2), .•• ,6(xk)
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and let 5. ={x.; e(x.) =V
1
,}; i =1, 2, .•. ,H. Define the partial order.

1 J J

SS on 5 by xa ~ xe if and only if xa « xa and xa ' x/3 ~ 5i for some

i. Let L(e) be the a-lattice of subsets of 5 induced by ss and let

I(e)(I) be the collection of all functions on 5 which are isotone with

respect to SS«<) • The collection 1(6)(1) is a closed convex cone in the

Hilbert space of all functions on 5 and E{n(o)IL(e)) (E(o(o)IL)) is the

projection on I(e)(I) in this space (cf. Brunk (1965)). Furthermore

(3.6) I c I (e)

and using Corollary 2.3 of Brunk (1965), if E(o(o)IL(e)) ~ I· then

E(oCo)IL(e)) = E(n(·)IL~ •

Lemma 3.3. If minx 5 n(x.) ~ max 5 n(x
1
·) ~ minx 5 o(x1·) ~

i~ 1 1 xi~ 2 i€ 2
max 5 n(x.) ~ ••• ~ max 5 o(x.) then E(n(0)IL(6)) =E(n(o)/L) •

Xi € 3 1 Xi~ h 1

Proof: It suffices to show that E(n(o)IL(e)) e I. 5uppose

~Co) =E(nCo)IL(e)) and xa « xa • If xa ' xa e Si for some i then

xa ~~ xe and ~(xa) ~ ~(xa) • 5uppose xa « 5i , xa € 5j and i ~ j •

5ince 6(0) is isotone with respect to « the sets 51 + 52 + ••• + 5i and

51 + 52 + ••• + 5j are in L so xa~e 51 + 52 + ••• + 5i and therefore

i > j. Now ~(Xa)(~(Xa)) is an average of the values of nCo) at points in

5. (5.) so
1 J

and Ho) ~ I •
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For any 6(0) let PaCE) be the probability of the event E computed

under the assumption that 6(0) is the true vector of parameter values and let

PO(E) be the probability of E computed under HO '

Theorem 3.4. If S(o) satisfies HI and nl =n2 = =nk = n then

Proof: Define S$, L(S) and the sets 51' 52' ••• ,5h as before. Now

e(xi ) a.s •• 6(Xi ) so for sufficiently large n with probability one
A A A

min 5 S(x n ) ~ max. 5 SCx n ) ~ ••• ~ max €S 6(x n ) and from (3.5) and
xR,€ 1 ~ Xt€ 2 ~ xR, h ~

Lemma 3.3

for sufficiently large n with probability one. Using an argument similar to

the one used for Theorem 3.1 we obtain

where XCo) is defined as in Theorem 3.1. Here it is necessary to use the

fact that piCS(o)) is positive and constant on the sets 51' 52' ••• ,5h •

The desired result follows from (3.6) since

l~=l P2(T i ) [E(X(o)/L(Q.)) (xi) - X(xi )]2 = IIE(X(o)IL(6)) - X(o)11 2

s IIE(X(o)IL) - XC o)I/ 2
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It seems clear that the hypothesis nl =nZ = ... =nk could be relaxed.

It was required to take n inside the conditional expectation. However, the

measure on 28 on which the expectations depend, also depends on ni so that

such a relaxation would still require some assumption about the way the

go to infinity.

n.' s
1

Likelihood ratio tests for testing HO against HI are discussed in

Barlow et. al. (1972). However we have been unable to find an analogue to

Theorem 3.1 for this test. An argument similar to the argument given for

Theorem 3.1 yields

Theorem 3.5. Let TOl = -2lnAOl where AOI is the likelihood ratio for

testing HO against HI and assume the hypotheses of Theorem 3.1 are

satisfied. Then

(

and X(o) is as in Theorem 3.1.

Corollary 3.6. If the hypotheses of Theorem 3.1 are satisfied then

for all t (cf. Theorem 3.1 of Barlow et. al. (1972)).

In closing it is worthwhile to point out that among families with densities

of the form given by (3.1) are the Normal, Binomial, Poisson and Exponential

families. In particular, in the normal case if the ~(xi) are known and



,
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6(Xi ) is taken to be a2(xi ) , then one may form likelihood ratio tests for

trend in the variance. Such a test is useful in the analysis of residuals

~cedure to determine, for example, if there

hence if weighted least squares is appropriate.

isotonized variance estimate can be used to

hted least squares procedure.
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