
...
SEQUENTIAL ESTIMATORS .AND TIIE CRAMER-RAO LOWER BOUND

Gordon Simons*

summary

While all nonsequential unbiased estimators of the normal mean have

variances which must obey the Cramer-Rao inequality, it is shown that

some sequential unbiased estimators do not.
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1. Introduction

Beyond its limited practical llnpQTtance, the. main significance of

Wolfowitz' (1947) discovery of a sequential version of the Cramer-Rao

inequality was that it dampened the enthusiasm of early proponents of

sequential sampling. The substantial savings in (expected) sample size

from sampling sequentially, demonstrated by Wald and others in the area

of hypothesis testing, would apparently not be realized in the area of

estimation. The reasoning was as follows: Wolfowitz' result implies that

no unbiased sequential estimator e of the normal mean, satisfying certain

regularity conditions, can have a smaller variance than 0
2lEN, where 0

2

is the variance of the nonnal observations and EN is the expected sample

size. Since the sample mean for a sample of size n has variance 02/n , the

"only way that e can have a smaller variance is for EN to exceed n. The

point of the present paper is to show that this reasoning is misleading;

"there do exist unbiased sequential estimators e of the normal mean which

have smaller variance than that permitted by the Cramer-Rao inequality. To

be precise, the regularity conditions Wolfowitz assumes, while excessive,

can not be eliminated altogether. Thus the Cramer-Rao botmd does not

need to hold. The conclusion to be drawn. is that the limitations of sequen­

tial estimation, whatever they may be, must be assessed by other means.

One may reasonably object to an assessment which focuses completely

on unbiased estimation. However, in defense of the current concern with tm-

biasedness, it should be said that:

(i) When one is estimating a location parameter such as the normal

mean, a restriction to tmbiased estimators seems fairly innocuous.



2

(ii) The current attempt to give a nonasymptotic theoretical

assessment of sequential estimators is a difficult task madesamewhat

easier by restricting one's attention solely to unbiased estimators.

Perhaps others will be encouraged to make a more comprehensive study which

includes other estimators. The author believes that the present study

sheds same light on the complexities one will need to consider.

(iii) The present study addresses itself to a long-standing, un­

settled, theoretical question: It has been mown for a long time that

the regularity conditions one encounters in proofs of the Cramer-Rao

inequality are usually unnecessary when one restricts one's attention to

fixed sample size estimators. (This has been shown by Chapman and Robbins

(1951), by Charles Stein in an unpublished note, and as an indirect conse­

quence of the theory of complete and sufficient estimators.) It has not

been mown whether the same situation occurs with sequential estimators. ~

This paper settles the issue; same regularity conditions are necessary.

(A mild hint that regularity conditions may be needed is given by the fact

that a widely encompassing theory of complete and sufficient statistics

is impossible in a sequential setting; completeness too easily fails to

occur. Cf., Lehmann and Stein (1950).)

As a historical note, it should be mentioned that sequential estima­

tors have been shown to be more efficient than nonsequential estimators in

a setting in which the Cramer-Rao bound has no applicability. This can

occur when one is estimating a location parameter 8 for a family of

densities {f(x-8), -oo<8<oo}, and f is a discontinuous density function.

(Cf., Ibragimovand Khas'minskii (1974).) Of greater importance, many

sequential estimators have been proposed which have attributes not obtain­

able by fixed sample size estimators.



Section 2 discusses three situations in which the Cramer-Rao bound

holds for unbiased sequential estimators of the normal mean. Besides

being of some interest in themselves, they shed light on the counter­

examples discussed in Section 3.

2. Cramer-Rao bounds.
A

The Cramer-Rao inequality for an unbiased estimator r of a real

parameter reS), when S is real and r is differentiable, is a statement

that its variance is bounded below by the ratio of the square of the deri­

vative of reS) and the Fisher information in the sample. In the case of a

random sample of size n, this takes the form

3

(1)
(r'(S)) 2

~ nICS)

e where I (a) is the Fisher information in a single observation. Wolfowitz'

(1947) version for a sequential random sample with stopping time N takes

the form

(2)

(3)

• A

When particularized to an unbiased sequential estlmator a of the normal

mean a, (2) reduces to

A 2
Varaa ~ EON' -00 < a < 00 ,

a

where 0
2 is the variance of the nonnal observations. Before we proceed to

show that (3) can be violated, we shall discuss three situations in which

(3) is valid:

(a) Suppose e= 'XN' the sample mean for the observations Xl' ••• '~

where the random sample size N ~ 2 is chosen so that the occurrence or non-

occurrence of the event [N=n] depends on the first n observations



4

Xl' ••• '~ only through the values of the differences X2-Xl , X3-Xl' ••• ,Xn-~

for each n ~ 2. (For instance, if one were tmcertain of the value of ci,
one might use the sequence of sample variances to define N.) Then it is

A

easily checked that a is an tmbiased estimator of a (assuming N is almost

surely finite for all a), the distribution of N is independent of a, and
A 2 -1 -1

Varaa = cr EaN. In such a case, (3) is equivalent to EaN EaN ~ 1,

-00 < a < 00, which, of course, holds. Moreover, it is easily seen that an
A

equality is obtained in (3) for a = XN only when N is almost surely a con-
A

stant, i.e., when a is a nonsequential estimator. Even when N is not constant,

if EaN < 00, there exists for each fixed aO an tmbiased sequential estimator

which attains the lower botmd given in (3) at a = aO. For the special case
A

ao = 0, this estimator takes the form a = ~/EON, where ~ = Xl +•• •+Xw

(b) Blackwell and Girshick (1947) show, for a general stopping time

N, that the tmbiased sequential estimator e= Ea(Xll~,N) satisfies (3).

(Some assunptions appearing in their paper are not needed.) The main aspects
A

of their argument are: (i) a is a statistic ((~,N) is a sufficient stat-
A

istic for 8) and an unbiased estimator for 8; (ii) when EeN < 00, e(~-Ne)

and Xl (~-Ne) have finite expectations, and

A

(the first equality being a trivial consequence of the definition of e, and

the second being established with an interesting martingale argtUOOnt); and

(iii) using Schwartz' inequality,

This latter step requires a version of a Wa1d identity not available in 1947
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(cf., Chow, Robbins and Teicher (1965)). Inequality (3) is a triviality

for any a for which EaN = 00.

e, in general, is not ~ even when N is a stopping variable of the

type described in (a) above. Of course, when N is almost surely a constant,
A

a reduces to a sample mean. Blackwell and Girshick show, in their paper,

that an equality holds in (3) only when N is a constant. This pertains

to their estimator e= Ea(Xll~,N) and does not contradict what is said

about e = ~/EON in (a) above.

(c) Suppose N has a finite moment generating function ma(t) = EaetN

for all real t and a. (This occurs, for instance, when N is a bOlmded stopping

time.) Further, let

2 -N/2 1 ~ 2Pa = (27f0 ) exp{ - -::-2" L (Xi-a) }, -oo<a<oo,
20 1

. 2 2 Pa+h 2
denote the likelihood function. Smce rna (h /0 ) = Ea+2h(p ),

a+2h
it is easily seen that the finiteness of rna (t) for all a and t is equivalent

to

(4)

With (4) as an assumption, it follows from Theorem 1 of Stein (1950) that,
"-for each fixed aO' there exists an unbiased sequential estimator a, based

upon the sample Xl'''. ,XN,which has minimtun variance at a = aO among all

unbiased sequential estimators using the same sample. The form taken by
"-

a is not specified, and whether or not (3) holds for this estimator is not

addressed. However, using the same argument given by Chapman and Robbins
A

(1951), one can show for every unbiased sequential estimator a that

varae ~ l/IN(a), -oo<a<oo, providing one defines the Fisher information for

the sample in a nonstandard way by



I (8) = liminf E h-2(P8+h _1)2
N h+O 8 P8

_00 < 8 < 00 •
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Finally, by using the dominated convergence theorem, together with the

fact that

one easily obtains IN(8) = E8N/a2, from which (3) follows.

Two counter-examples. For both counter-examples given below, one is

concerned with estimating the nomal mean 8 unbiasedly, and in such a way

that the variance of the estimator § violates the Cramer-Rao bound, given

in (3), when 8 = O. The first counter-example is defective in the sense

that the stopping time assumes an infinite value with positive probability

when 8 'f O. Nevertheless, it is quite sinJp1e and it motivates the second

counter-example, which is more difficult to describe.

First counter-example: Let

(5) (=00 if Is I ~ nY, n ~ 1) ,
n

where Sn = X1+... +:Xn , and Y E: C~,l) is a fixed constant. Then POCN<oo) = 1,

in fact EON < 00, while P8(N = (0) > 0, 8 :f O. Estimate 8 by

A

8 = 0 when N < 00

= XooIPx (N=oo) when N = (0)

00

where X = lim X. In view of the strong law of large m.unbers, this estimator00 nn-+oo
is well-defined, and is clearly unbiased.

(3) is violated when 8 = O. I.e.,

A

Since Var08 = 0 and EON < 00,
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A a
VarOa = 0 < E N

o

Observe that VaraS = aZPe(N < oo)/Pa(N = 00) is finite when a 1: o. But, of

course, there is no way of contradicting (3) for such a since EaN = 00.

Summarizing, e is an unbiased estimator of e with a finite variance for all

a and with variance zero for 8 = 0; it does not satisfy the Cramer-Rao bound

when a = O.

Second counter-example: Relabel the observable nomal random variables as

X, y, Z, Xl' XZ, ... and continue to define Sn as XI +•••+~, n ~ 1. We shall

exploit the facts that X is an unbiased estimator of a, and Z-Y is a random

variable whose distribution is independent of a. A positive integer-valued

ftmction of Z-Y is a random variable Mwhich is independent of X, XI,XZ, ••• ,

and which has the same distribution for all a. Moreover, one can choose any
"'-

distribution on {l,Z, ... } for Mas need may dictate. The estimator a will

be defined for a sample of size

(6) L = 3 + min(M,N) (a stopping time) ,

where N is defined by (5). Thus L is almost surely finite for all a and,

in fact, the expected sample size EaL is unifonnly bounded for all a providing

Mhas a finite expectation. Since EOL ~ 3 + EoN < 00, one can contradict the

Cramer-Rao bound, i.e., show that

by showing that, with one's freedom to choose a distribution for M, the value

of EoeZ can be made arbitrarily small.

a) Definition of e: Let

e= 0

_ Po(~=nISn)

- Po (N~n, M=ri ts;J"

when N < M

when N ~ M= n ,
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n ~ 1, where y E(~,l) is as in (5), and

(7)

The sequence ~ is required to go to infinity as n .t- 00 lIDU to satisfy
A

o ~ ~ < n, n ~ 1. The properties of e depend upon the values of ~

and Pn = Pr(M=n) , n ~ 1, which remain to be specified. It is easily
A

checked that e is a function of the observed sample X, Y, Z, Xl' X2,··· ,~N'

where MAN denotes the minimum of M and N, and, hence, can be used to estimate e.
A

b) Moments of e: Since Sn is a sufficient statistic for e relative

to the observations Xl'." ,~, the probabilities

are actually independent of e. Let I = {~l: Pn>O}. For integer r ~ 1,

P (T\L=nIS ) r
Ee(8 Ir = L f IXIr e'''M n dP

nE I [M=n~N] Pe(N~, M=ri rs;J e

(8)

and, consequently,

A

Thus Eee is defined, and it follows, as above, that
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(C) The 1mbiasedness of e: In view of (9), e is unbiased whenever

Pe(NMEI) = 1, e r O. First, observe that this can not hold if I has a

largest index nO' for there is positive probability (for every e) that

I~I < kY, 1 ~ k ~ no' forcing ~ to exceed nO (cf., (7)). On the other

hand, if I is an 1mbounded continuous sequence of integers with minimal

element nO' then ~ ~ M ~ nO (cf., (7)) and, consequently, NM E I whenever

~ < 00. Now, when e r 0, Pe(I~1 ~ kY Lo.) = 0, since Y < 1. And since

~ -+ 00, Pe Cl\f < (0) = 1 (c f., (7)), er O. Thus a is unbiased whenever the

support of M is an unbounded interval of integers. We note, in passing,

that when I is bolmded, so is the stopping time L, and, from the discussion

in part (c) of Section 2, it is apparent that, in such a situation, every

1mbiased estimator satisfies the Cramer-Rao bOlmd.

(d) A needed lenuna: .For some positive constant c depending onZy on

Y,

(10)

aZmost surely, 1 ~ m ~ n < 00.

Proof. For definiteness, let ci = 1. Then, conditional on Sm+l being v,

Sm is nonnally distributed with mean m~l v and variance m~l. Consequently,

[
~IVI-inY

> 4> m::;;+~l::....-_-t

vfu/(m+l)

l~en Ivl ~ (m+l)Y ,
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(11)

for some sufficiently large constant c depending on y, but not on m (or n).

(The argument of ~ in (11) approximately equals -(l-y)m-(l-y), which is

botmded below for y < 1.) Inequality (10) easily follows from (11). 0

almost surely, n ~ 1.

Since N > n says that I~I ~ kY for 1 $ k :5 n, and ~ = n implies that

I~I ~ kY for ~+l $ k $ n, it follows from the lennna that

k
PO(~=nl Sn) $ c npo(N)nISn)(12)

(e) . "The varlance of e at e = 0: According to (8),

Since

it follows from (12) and (13), and then (7), that

"2 2 ~ kn - l
E e - 0" l. C P Po rN.. -=n)o - nEI n '-OM

The latter expression can be made arbitrarily small by letting ~ -+ 00 very

slowly, by letting Pn be zero tmtil n is quite large, and then letting
2y-l 2

Pn -+ 0 at a reasonably slow rate. This is because PO(ISnl ~ nY) = o(e-(n /20"))

as n -+ 00 and, hence, it goes to zero at a suitably fast rate. In fact, one

may let Pn -+ 0 sufficiently fast that Mhas all of its moments finite. Thus,

"not only can one find an tmbiased estimator e which violates the Cram~r-Rao

inequality at e = 0, but this can be done with a stopping time L whose r-th
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lOOment is unifonnly bounded in e (cf., (6)) for every r ~ 1.
"-

We have not been able to prove that e has a finite variance for all e

or found a way to modify the approach used in this second counter-example

to obtain a finite variance for all e. While this is not a necessary attribute

in a counter-example, it would have been nice to have been able to do so.

"-
Recall that the variance of e is finite for all e in the first counter-

example.

It would be interesting to know whether one can cause the Cramer-Rao

inequality to be violated at more than one value of e. This seems likely.

The author suspects that "violation sets" must be of Lebesgue measure zero

(by analogy with what happens with "super-efficiency," cf., LeCam (1953)),

but knows of no argtDOOnt which rules out larger sets.
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