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. X. A Continuous Time Model of Electricity Consumption Which Incorporates

Time of Day Pricing, a Demand Charge, and Other Commodities

Over an interval of time [0,T], say, a month, a consumer chooses
a path of electricity consumption c¢(t) with units in kilowatts per hour
and, under conventional pricing, is billed proportiomally to the total kilowatt
hours consumed over the period, compu%e.d as [z c(t)dt. Time of day pricing
uses, instead, the billing formula JO r(t) c(t) dt where r(t) 1is the
rate schedule witﬁ units in dollars per kilowatt hour.
‘ o The method of computing a demand charge varies from utility to utility.

The method described here is that used in the North Carolina Time of Day Rate

Demonstration Project. At selected times during [0,T] denoted as

the average kilowatts per hour that a customer consumes over the next

fifteen minutes is computed,

t,+A
(1/4) Jl e(t)dt.
t

i



The maximum of these as i ranges from 1 to K is,. say, D. An amount
d * D is added to the customer's bill where d has units in dollars

per kilowatt per month. For netational convenience, set

-1/4 g, sese + 4
0 otherwise
whence
T ti+A
f Ii(t)c(t)dt = (1/R8) f c(t)dt.
0 t.,
i

Let q denote an N-vector of conventional commodities, let p be
an N-vector of corresponding prices, and let ¥ denote a consumer's tofal
expenditures over the period [0,T]. The consumer is constrained to choices
of electricity consumption paths c{t) and quantities of other commodities

q which satisfy

T.
q4(e5q,D) = jo r(t)c(t)dt + p'q +dD =y <

A
O

T
.fo Ii(t)c(t)dt -D

[}

IA
o

ql( c,D)
i = 1’2,...,K.

These equations define the.income'constraint set.
The consumer is presumed to choose an electricity consumption path
(t) and other commodities q by maximizing a functional wu(c,q) over
the income constraint set. The functional u(c,q) maps a square integrable

function c(t) ¢ LZ[O,T] and a commodity vector q ¢ 'RN into the real



line. One has in mind, possibly, an analogy to the Generalized Leontief

functional form

T
u(c,q) = Z§=l ay 1n a4 + J a(t) 1n [c(t)]dt
0

N N (T (T o
* Zi=1 Zi=l Bij(qiqj) + Io fo B(s,t)[c(t)e(s)]“ ds dt

T 35
ei(t)[qic(t)] dt

* T J

0

Electricity is an input into household production so that this objective
function is to be regarded as a composition of household production functions
and a utility function. There is no mathematical impediment to the construction
of a household production type of model but since electricity consumption is

not measured by end use in the available data-there is‘little point to the
exercise,

To solve this optimization problem, a notion of differentiatién of a
functional such as u(e,q) with respect to a square integrablé function c(t)
is required. To do this, suppose that K(t,x), (3/9x)K(t,x), and (82/9x2)K(t,x)
are continuous with (BZ/BXZ)K(t,X) bounded over 0 < t < T, —» < x < « and
that a functional f(c) is defined by

T

f(c) = J Klt,c(t)]dt.
0

It follows that, for c¢,h ¢ L2[0,T],

T
f(cth) - £(c) = J (3/3x)K[t,c(t) Ih(t)dt + o(||n |
0
T , 5
where !]hl] = [: J h (t)dg] .« This equation suggests a definition of a
0 A

derivative ch(c) and a definition of a differential ch(c)h.



The square integrable function

vV E(e)(£) = (d/dx)K[t,e(t)]

may be regarded as the derivative of £(c) evaluated at ¢ and

T

v_E(c)h = J ch(c)(t)h(t)dt

0
may be regarded as the differential approximation to the difference

£(cHh) - £(c)

. Under similar regulafity conditions, if £(c) =

for small || h|
T

T
J j Rit,s,c(t),c(s)]dt ds then
0’0

T

ch(c)(t) = J (WaxI)K[t,s,.C('t),C('S-)] + (B/BXZ)K-[s,t,C(S),c(t)lds
0

In general, if one can find a square integrable function F(t) which satisfies

the equation

o :

£(cth) - £(c) = J F(e)h(e)de + o(l|nl])
0

for square integrable c¢,h then
ch’(c)(t) = F(t).

N . , : .
Differentiation with respect to q € R retains its conventional meaning

3

aq

b )
= 2 ¢
qu(q) ( aql (CI), ,

3
£(q)s00ey, 7= £(q)} -
an )

Thus
f(g+h) - £(q) = V £l +o(lnlh
. = ZLI(B/aqi)f(q)hi +o(lin )

3
3

where [lhllv= (Z§=l hi) .



As shown in detail later in this section, the Kuhn~Tucker first order

conditions for the consumers optimization problem are

v ule,@) (8) = Xjr(e) = [T AT (2) =0
un(c,q) = AP =0
K =
- hgd =g ML =0
T
[ r(t)e(t)dt + p'q + dD =y
0
(T
xi [: yo Ii(t)c(t)dt - Eﬂ =0

-~

for i =0,1,...,K. Assume that exactly one constraint 1 is binding;
this is approximately the same as assuming that the consumers chosen con-
sumption path c¢(t) has a single maximum. In this case the first order

conditions are

ch(c,q)(t) - Xor(t) - AﬁI{(t) = 0

un(C,Q) - KOP = 0

r(t)e(t)dt + p'q + 4D

S————
o +3
1]
<

1]
[we}

T
J Ir(t)c(t)dt
0 1

Algebraic manipulation yields



T
Ay = [:A]O v ulc,q) (E)e(t)dt + V;u<c,q);}fy

A = Agd

whence the first order conditions become

7 u(e,a) (£) = AT (1),

Vquelea) AgPs

TA
j r(t)e(t)dt +p'q = y
0

T(E) = r(e) + SROR

Marginal utility is proportional to price at each instant of time. The

result generalizes; conditional on

T T T
( e(t)Ia(t)dt = j c(t)Ip(t)dt = max, J e(t)I, (t)dt
Jo 1 0 1 o +

the first order conditions are as above but with
r(t) = r(t) + d max [I~(t),Iz(v)].
i i

Another implication of the first order conditions is that consumption
is homogeneous in prices and income. That is, the electricity consumption

path is of the form
c(t) = cl(r,p)/¥](t)

and the consumption of other commodities is given by a function of the form

q = al(z,p)/y].



Typically, the price path r(t) is periodic over =-= < t < o}

that is
r(t+kI) = r(t), k =0, +1, +2, ...

It also seems natural to impose periodicity on marginal utility
V. u(c,q) (e+kT) = V_y(c,q) (t).

The optimal consumption path
e[(x,p)/¥1(2)

will, as a consequence, be periodic.

A stocastic specification of an observed demand path ci(t) is

¢y (8 = cl(E,p)/¥](t=1)) + e,

where Tt f(t), 0 <t < T, represents small errors in knowledge of
the time of day, and e, - g(e) represents an additive error of observation.

The expected demand path is, then,

e[ (£,p)/y](t) = Elc, (©)]

1

T ,
J c[(T,p)/y](t=-t) £(1) dr
0

T
[ £(t-s) e(r,p)/y](s)ds
0

where f(t) has been extended to a periodic function. If f(tr) is bounded

and continuous then

1imt+t0 ¢ [(%,p)/y](t)



[1imt4t

U
S,
o =3

£(t=-s) e[ (T,p)/y1(s)ds
0 . .

]
S
=]

£(ty=s) cl(T,p)/y1(s)ds
0

e[ (r,p)/y1(ty)

whence the expected demand path is continuous regardless of whether or not
the optimal demand path is continuous.
The path c[(T,p)/y] is a convolution. Thus, if £(t) and c[(§,P)Aﬁ](t)

have Fourier expansions with absolutely summable coefficients

B0 = [T oy /D /DI

T . .
aj = j £(1) (1//T) e—l(Zﬂ/T)J?dT
0

C[(f,P)/Y] (t) = Z;=_m Bj (l/ﬁ)ei(ZT\'/T)jt
' | -i(27/T)it
By = f cl(2,p)/y](£)(1//T)e Jtge
0
then
&) /v = I, (ajsj)(l,,§3ei(zﬂ/w>jt_

Thus, the Fourier coefficients of the expected demand path are attenuated
by those of the timing error distribution £(t); they decrease to zero
faster than those of the optimal demand path.

When fitting this -demand system to data, 3 or (i,%) as the case
may be is found by inspecting the consumption path c¢(t) which obtains

in the data. This introduces an errors in variables problem as, due to



error, the i which obtains may differ from the optimal i . This problem
is addressed in a later section.

Another problem in empirical work with the demand system is that con-
sumption is defined as an implicit function of price. Consumption expressed
as an explicit function of price is preferable. A form of Roy's identity
is available to address this problem. An indirect utility functional

v(%,x) has income normalized prices as its arguments
x(t) = r(t)/y

p/ .

»
1]

One has in mind as a choice of v(%,x) a generalization of a flexible

functional form along the lines described earlier. Roy's identity is

— (T . N -1 .
c(t) j x(t)Vg\(x,x)(t)dt + x'VX(x,xE} ng(x,x)(t)

0

— T -1
q = B [0 ﬁ(t)V;v(x,x)(t)dt + x'Vx(§,xz] va(g,x)

Next, a detailed verification of the first order conditions is presented.
The reference for notation, definitions, manipulative results such as the chain
rule, and the Kuhn-Tucker first order conditions is Wouk (1979, Ch. 12).
The fact that both LZ[O,T] and RN are self dual is exploited repeatedly
in the development. Thus, a bounded linear operator <+,r'> on LZ[O,T]
must be of the form
T
<g,r'> = Jo c(t)r'(t)dt ¢ ¢ LZ[O,T]

where r' ditself is in LZ[O,T]. This being the case, the notation r' to



10

indicate membership in the dual space is dropped in favor of the notation r

1

gince r' 1is, in fact, in LZ[O,T]. This gives rise to another fact which

is exploited repeatedly

T
<ec,r> [ c(t)r(r)dt <r,c>,

0

N
<q,p> = i, 4Py = <P,a>.

The Frechet partial derivative with respect to c evaluated at (c,q)
of a mapping £f(c,q) from LZ[O,T]®RN to, say, RN is a bounded linear
operator denoted as ch(c,q) which maps h ¢ L2[O,T], its domain, into

RN, its range, and satisfies
£(cth,q) = £(e,q) = ¥ f(e,a)h + o(|[n]]).

The notation ch is used frequently to mean ch(c,q); Table 1 is provided

to avoid any confusion caused by this abbreviation.



1. Frechet Partial Derivatives

Frechet Partial Derivative Evaluated at Domain Range
ch = <-’Vcl’1> (C,q) L2 R
N
vq»u = <-,un> (c,9q) | R R
Vyu = <s,0> (c,q) R R
Vg = <°T? (e5q,D) L, R
N
ngo = <+,P> (c,q,D) R R
Vo8 = <e,d> (c,q,D) R R
chi = <'in> (C,D) L2 R
N
ngi m= <e,0> : (c,D) R R
Ve, = <L (c,D) R R
Vov = <o, Vaw> (r,p) L, R
Vv = <,V vy> (%,P) RN R
P P
Ve (r,p) L, L,
a N
Ve (T,p) R
P L2
V.4 (rsp) L, 2N
v q (t,p) RN N
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The consumers optimization problem is to

maximize: u(c,q)
subject to: go(c,q,D) = <¢,r> + <q,p> + <D,d> -y <0

gi(c,D) = <c,Ii> + <D,-1> < 0 i=1,2,...,K.

A unique solﬁtion (e¢,q) of the consumers optimization problem which
satisfies go(c,q,D) = 0, gi(c,D) =0 for some i, c(t) > 0. all "t e [0,T],
and 9 >0 for i=1,2,...N 1s presumed to exist for each (r,p,d) with
r(t) >0 .all t ¢ [0,T], Py > 0 fori=1,2,...N, and d > 0. The
Frechet derivative of wu(c,q) 1is presumed to exist at (ec,q).

The Kuhn-Tucher first order conditions for this problem are

ch(c,q) - k0<~,r> - Z§=l Ai<°,Ii> = 0
un(c,q) - KO<',p> = 0
Ag<esd> - Z?—l Aj<e,ml> =0
<c,r> + <q,p> + <D,d> = v
Ai[<c,Ii> + <D,~1>] = 0.
If exactly one constraint ; is active, then Xi =0 for i # 2,0

and the first order conditions may be written as
vcu(c,q) - XO <e,r> = Ag <,z = 0
un(c,q) = Ag <*,P> = 0

- AO <e,d> - A{ <o, =1>

]
. O



<c,r> + <q,p> + <D,d> =¥

<C’I{> + <D,-1> = 0

then

[<c,ch> + <q,vqu> + 0] - AO[<c,r> + <q,p> + <D,d>]

- k£[<c,Ii> + <D,-1>] = 0
which simplifies to
[<c,ch> + <q,un>] - KOY'= 0

using the income constraint and <c,Ig> + <D,-1> = 0.

Thus,

AO = [<c,ch> + <q,un>]/y.

Now the equation

~Ag<e,d> = Ag<e,=1> = 0

may be rewritten as

A0d<-,-i> - Ag<e,=1> = 0

whence
li = kod .

The first order conditions become

VCU(C,q) - >‘O <"§> =0

13
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vqu(csq.) = ‘>\O <e,p> =0

~
<¢,r> + <q,p>

o
«

with »
r=1r + dI{
AO

= [<c’vc&-> + <q’un>]/'y‘ .

Suppose that there is a differemtiable mapping (c,q) = {c[(E,p)/y];
ql(t,p)/y]} of (r,p)/y into the point (c,q) which solves the consumers

optimization problem. The indirect utility function is, then,
v[(r,p)/y] = ulel(z,p)/y] al(T,p)/¥]}.
By the chain rule

Vav = ¥V uV»~c + V uVaq ,
r A o q T

<l
<
#

Vu c+V uv q .
c P q P

Substitution of the first order conditions derived earlier yields

Vv = A <-,§>"V;c + Ay <*5p> V2q

Vv =i <s,r> Ve + A

. 0 <*p> Vo4 .

0

Differentiation of the income constraint

<C[(£;P)/Y],;> + <q[(x,p)/71,p> =¥

yields the equations



]
[w]

<,e[(r,p)/¥]> + <+,1> Vac + <+,p> Vaq

1]
o

<,'\'sQ[(§’p)/y]> + <";> vpc + <+,p> qu

Substitution into the equations for V;v, VPV yields

Vav = =) <o, c[(2,0) /31> ,

<
<
[}

Ay <*,al(F,p) /¥]> .

Then

]

<E,Vgw> + <p, T = =Ag [SF,clEp) /y]> + <pyal(E,p) /y]>]

[}

Ao el (£,p)fy 1,£> + <q[(r,p) /y.1,p%]

= —Aoy .

Substituting for AO yields Roy's identity

<e,c> =37<-,v§v>/[<r,v§v> + <p,vpv>] s

<e,q>

y<-,VpV>/[<r,V;v> + <p,va>-] .

If one writes V(§,x) for the indirect utility function where

)
#

t/y

ply

o}
[]

then Roy's identity becomes

. A
<s,c> = <.,V§v>/[<x,V§v> + <X,V£V>] s
~
<e,gq> = < Vv>/[<x,Va¥> + <x,V V> R
’q ’X/[,X ,X]

15
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