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ABSTRACT

The problem of extending a given sampling design, when additional resources
are available, is considered. Some existing methods of improving an initial
sampling strategy, so that the use of the additional resouy'ces is justified, are
critically reviewed. Admissibility of the existing strategies is questioned. In

the process, improved strategies are suggested in various cases.
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1. INTRODUCTION

Suppose a survey statistician is interested in estimating a parametric

function e(Y) of a character Y for a finite labelled population U = (1, 2, ... , N)

of size N. Given the initial resources, the statistician has decided to adopt

the strategy (Pn' en) where Pn refers to a fixed sample design of size nand

en refers to an estimator for e(Y). Let s de.,ote a typical sample of size n_ n

from U and S denote the sample space consisting of samples of the type s for_ n n

which Pn(sn) is positive. Additional resources are subsequently made available

to the statistician which may be used to obtain another sample of k units. We

assume throughout n + k < N. In this paper we discuss the choices for the

sampling design for the second sample. We also present reasonable sampling

strategies (Pn+k, en+K) based on the combined sample.

We use the following notations and definitions in this paper.

(i) An estimator en is said to be (Pn -) unbiased for e(Y) if

for all Y = (Y l , ... , YN).

(ii) A strategy (p, e) is said to be unbiased for e(Y) if the estimator

e is (P-) unbiased for e(Y) in the above sense.

(iii) An unbiased sampling strategy (P, e) is said to be at least as good

as another unbiased sampling strategy (P*, e*) if

(1. 1)

for all Y, where Sand S* are the sample spaces corresponding to the sampling

designs P and p* respectively. We say (P, e) is better than (P*, e*) if strict

inequality holds in (1.1) for at least one Y. The sampling strategy (P, e) is

said to be admissible if there is no other sampling strategy that is better than
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(p, e). It is said to be inadmissible otherwise. In this paper we consider un

biased strategies only.

Let Pk denote a fixed size sampling design of size k on U. Suppose the

statistician uses the sampling design Pn to obtain sn and when additional

resources are available, uses Pk to obtain an independent sample sk o Then

the combined sample, snUsk' may be of size varying from n to n + k. We denote

the sampling design obtained by taking an independent sample in the second stage

by PnUPk. Given sn is selected in the first stage using the sampling design

Pn' an alternative procedure is to select a sample of size k from U - sn. Let

{Qk(· I sn) I snsSn} denote a family of such fixed size sampling designs of

size k. If the second sample sk is selected from ~ - sn using Qk(· I sn)'

following the selection of sn as the first stage sample, then the combined

sample sm is of fixed size m = n + k. Let Pm denote the underlying fixed size

sampling design of size m = n + k. Note that

(1. 2)

for all sm. Let Sm denote the sample space corresponding to the sampling design

Pm. In section 2 we will show that for a given sampling strategy (PnUPk,e) , we

can find a fixed size sampling strategy (P~, e*) that is better.

If the sampling designs Pn and Qk correspond to simple random sampling

without replacement (SRSWOR) procedures, then Pm is also an SRSWOR design. It

is well known that the sampling strategy (Pm' Ym) is better than (Pn' Yn) where

Y is the sample mean and Pn and Pm are SRSWOR sampling designs of sizes nand

m respectively. Therefore, in this situation, the use of additional resources

for selecting k more units is justified. This characteristic of improving the

efficiency by using additional sampling units, however, is not shared by JUl

sampling strategies. Cochran (1963), Ajgaonkar (1967), Chaudhuri (1977) and
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Chaudhuri and Mukhopadhayay (1978) considered the properties of the sample mean

and/or the Horiwitz-Thompson estimator (HTE) under different sampling designs

Pn and Pm· It was observed that the sampling strategies (Pm' HTE) and (Pm' Ym)

are not necessarily better than (Pn, HTE) and (Pn, Yn), respectively. For the

case where the sampling design Qk is SRSWOR, Sinha (1980) presented simple

conditions on the first and second order inclusion probabilities of the sampling

design Pn so that (Pn+k, HTE) is better than (Pn+k-1, HTE) simultaneously for

all k = 1, 2, ...

Lanke (l975) considered extending an arbitrary sal7lp1 ing strategy (Pn' en)

to another strategy (Pm' em) via Qk so that (Pm' em) is better than (Pn, en)

irrespective of the choice of Qk. He proposed the estimator

(1. 3)

We will refer to the estimator (1.3) as Lanke's estimator. Notice that Lanke's

estimator is in some sense Rao-Blackwellization of the estimator e. Lanke (1975)
n

established that the estimator em in (1.3) is at least as good as en no matter

what Pn ' en and Qk are.

Sengupta (1982) extensively studied the properties of Lanke's estimator for

various choices of en' Pn and Qk. In particular, he observed that (i) Lanke's

estimator, even though it improves over the estimator en' may itself turn out

to be inadmissible, and (ii) if the estimator en is the sample mean (or HTE)

then there may not exist a sampling design Qk such that Lanke's estimator based

on en is again the sample mean (or HTE). He also showed that when en is the

sample mean and the sampling design Qk is SRSWOR, Lanke's estimator will

again be the sample mean if and only if the sampling design Pn is itself SRSWOR.
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In Section 2, we critically review Lanke's estimator and point out some

of its demerits in the present form. We then consider different versions of

this estimator to explore the scope for further improvement. Section 3

contains some concluding remarks.

2. MAIN RESULTS

In this section, we first show that it is better touse an appropriate

fixed size sampling design of total size m = n + k than to use two independent

sampling designs Pn and Pk of sizes nand k respectively.

Theorem 2.1 Let PnUP k denote the sampling design obtained by taking two

independent samples of sizes nand k using the sampling designs Pn and Pk
respectively. Suppose e is an unbiased estimator for s(Y) based on the composite

sampling design PnUPk. Then, there exists a fixed size sampling design p* of

size m = n + k and an estimator e* such that the sampling strategy (P~, e*) is

better than (PnUP k, e).

Proof: We assume n + k < Nas otherwise the claim is trivially justified. We

prove the theorem by constructing the sampling strategy (P~ , e*). Define,

m-l
P~(~) = PnUPk(~) + t=n i~/a(!)J-lpnUPk(!) (2.1)

where

and

a(~) = number of ~ with PnUPk(~) positive and iCj.

It is easy to see that P~ is a fixed size sampling design of size m = n + k.

Define, now, the estimator

e*(j) =
m-l

[p*{j)r1 [e(j)P UPk(j) + E E {a(i)}-lp UPk(i)e(i)].
m - - n - t=n i C j n_
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Then it is easy to verify that e* is unbiased for e(Y). Also, using Cauchy-

Schwartz inequality, one can show that (P~, e*) is better than (PnUPk, e). Q

It is thus advisable to obtain additional sampling units with

additional resources. Note further that given the sampling designs Pn and Pk,

the sampling design P~ has the same form as (1.2) for some conditional sampling

design Qk'

For the remainder of this paper, we will be dealing with sampling designs

of the type Pm given by (1.2) with components given by Pn and {Qk(·1 sn) snsSn}'

We next show that it is not possible to obtain an estimator based on the sampling

design Pm that is better than every possible estimator based on the sampling

design Pn. To give a quick demonstration of this, we restrict to homogeneous

linear unbiased (hlu) estimators of the form e(s,y) = .~ b(i,s)Yiand set e(Y)= Y.
lsS

Theorem 2.2: Let Pn be a connected sampling design (see Patel and Dharmadhikari

(1977)). Let Pm be any fixed size sampling design of size m = n + k obtained

by extending Pn as in (1.2) via an arbitrary Qk' Then there does not exist any

hlu estimator e based on Pm that is (uniformly) better than every hlu estimator

based on Pn.

Proof: Let el,n' e2,n' ... eN,n denote

that the variance of the estimator ei,n

N x 1 vector with 1 in the ith position

a class of hlu estimators of Ysuch

is zero at the point qi' where qi is an- -
and 0 elsewhere. (See Patel and

Therefore, the variance of the estimator

Dharmadhikari (1977) to ensure the existence of such estimators).

Suppose there exists a hJu estimator e based on Pm that is better than

every estimator based on P. Then the estimator e, in particular, will be better
n

than the estimators el ' ... , eN .,n ,n

e must be zero at the points ~l' ~2' ... , ~N' However, it can be easily verified

that this is not possible unless e is identically Y. Q
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Even though there does not exist an estimator based on Pm that is better

than every estimator based on Pn, for given sampling designs Pn and Pm and an

estimator e based on P , there always exists an estimator e based on P thatn n m m
is better than en. For example, Lanke's estimator serves this purpose. So if

we wish to obtain a sampling stragegy that is better than (Pn' en) we may use

(Pm' em) where em is Lanke's estimator.

Now suppose en and f n are two estimators for e(Y) based on P. Let e_ n m

and f denote the corresponding Lanke versions of e and f respectively.m n n
The following example demonstrates that even in situations where the estimator

en is uniformly better than the estimator fn, it is not generally true that

the estimator em is better than the estimator fm.

Example 2.1: Consider the following sampling designs and the estimators e4 and f 4:

s4 P4(s4) f4
(1,2,3,4) 0.1 a1
(2~3,4,S) 0.2 a2
(3,4,S,6) 0.3 a3
(4,S,6,1) 0.2 a4

(S,6" ,2) O. , as

(6,1,2,3) 0.1 a6

\'/here

(a, + a2)/2

(3a2 + a3)/4

(Sa3 + a4)/6

(3a4 + as)/4

(as + a6)/2

(a6 + a1)/2

a1 = (280Y1 +210Y 2 + 140Y3)/S04,

a2 = (210Y2 + 140Y3 + 120Y4)/S04,

a3 = (140Y3 + 120Y4 + 140YS)/S04,

a4 = (120Y4 + 140YS + 210Y6)/S04

as = (140Y S + 210Y6 + 280Y1)/504

and
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It is easy to show that the estimate ~4 is better than the estimator f4·

Consider now the following extension of the sampling design and the correspond-

ing Lanke's estimators:

Extension
with k =, Q1( ·1 . )

(1,2,3,4) 5 0.5 (],2,3,4,Sr (a1 + 2a2) -(a
1

+ 4a2 + a3)

6 0.5 3 6

(2,3,4,5) 6 0.5 (2a 2 + 3a3) I (3a2 + 6a 3 + a4)(2,3,4,5,6) I 0.25
!

1 O.S S I 10

(3,4,S,6) 1 O.S (3,4,S,6,1) 0.25 (3a3 + 2a4) ! (Sa3 +4a4 + as)
2 O.S 5

I
10

I

(4,S,6,1)
I

2 O.S (4,S,6,1,2) 0.15 (2a4 + as) (3a4 + 2aS + a6),
I

I 3 0.5
I S

I
6

i

(5,6,1,2) 3 O.S (S,6,1,2,3) 0.10 (as + a6) I (as + 2a 6 + a1)
4 O.S 2 4

(6,1,2,3) 4 0.5 (6,1,2,3,4) 0.10 (a6 + a,) (a6 +2a, + a2)

5 O.S 2 4
I

It can be shown that the variance of fS is smaller than that of e5 at the point

9 = (0,0,0,0,1,0) and hence eS is not better than fs·

In the next example we demonstrate that Lanke's extension of an admissible

estimator may turn out to be inadmissible. This was first demonstrated by Sengupta

(1982). We, however, present a different example here.
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Example 2.2: Consider the following sampling designs for a population of size

six.

s3 P3(s3) Extension Q2 s5 P5(s5)
with k = 2

(1,2,3) 0.1 (4,5) 1 (1,2,3,4,5) 0.31

(1,2,5) 0.2 (3,6) 1 (1,2,3,5,6) 0.20

(2,4,6) O. 1 (3,5) (2,3,4,5,6) 0.10

(2,3,4) 0.3 (1 ,6) 1 (1,2,3,4,6) 0.30

(1,3,5) 0.3 (4,6) 0.3 (1,3,4,5,6) 0.09
(2,4) 0.7

Let e3 denote the HTE for e(:) based on P3. Consider the estimator

e(1,2,3,4,5) = ae3(1,2,3) + be3(1,3,5) + ce3(2,3,4)

e(1,2,3,4,6) = de3(2,3,4) + ee3(1,2,3) + fe 3(2,4,6)

e(2,3,4,5,6) = ge3(2,4,6) + he3(2,3,4)

e(1,3,4,5,6) = e3(1,3,5)

e(1,2,3,5,6) = ie3(1,2,5) + je3(1 ,2,3) + ke3(1 ,3,5).

Note that Lanke's extension of e3 is obtained by setting

a = 1~ , b = ~~ , d = g = i = 1 and c = e = f = h = j = k = O.

However, it is easy to show that the estimator e with a = 1~ , b = ~~ , c = 0, d =i '
113e = 0, f =4 ' g = 4 ' h =4 ' i = 1 and j = k = 0 is better than Lanke's

estimator. Infact one can construct several other estimaotrs that are better than

Lanke's estimator.

Note that in the above example (as in any other example) Lanke's estimator

assigns non-zero weight to only those subsamples sn of sm for which Qk(sm - sn I sn)

is positive. However, positive weights could be assigned to all subsamp1es sn

of sm for which Pn(sn) is positive. We investigate this possibility below and

present some improvements over Lanke's estimator. Consider
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(2.2)

where {W(s ,s)} are nonnegative constants. Note that ifn m

(2.3)

for all sn' then the estimator em is unbiased for e(Y) whenever e is so. Also,_ n

using Cauchy-Schwartz inequality, it can be shown that the estimator em is as good

as en if

L: W(s,s)P (s ) { .1: W(s',s} < p (s ) (2.4)
s s· n m m m s'cs n rn - n n
m;' n n m

for all sn' It is now easy to see that, under the condition (2.3), (2.4) holds,

if and only if,

L: W(s ,5 ) = 1
C;s n m

sn m

for all sm' We can also express the estimator em in (2.2) as

where Qk is given by

Qk(sm-snlsn) = Pm(Sm)[Pn(Sn)]-lW(sm,sn)'

Then, from (2.3) and (2.5) we get

s~s .Qk'(sm-sn1sn) = 1, for all sn
m n

and

(2.5)

(2.6)

(2.7)

(2.8)

In summary, the general extension em in (2.2) that improves over the

estimator en has the same form as Lanke's estimator. The only difference is that

the estimator(2.2) uses possibly a different sampling design Qk'.generating the
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same final design Pm. In some situations it is possible to find a different

Qk so that the estimator (2.2) is better than Lanke's estimator computed with Qk.

The choice of Qk would be such that the estimator (2.2) assigns positive weights

to all en(Sn) for which $~Sm and Pn($n) > O. We now present one such choice in

the next theorem.

Theorem 2.3: Suppose the sampling designs Pn, Qk and Pm are as defined in section 1.

Define,

and

B(sm) ={sn: sncsm,Qk(Sm-sn iSn) = O}.

Suppose there exist two samples ~~1) and s~2) such that

(i) A(s (l))UB(S (1)) = A(s (2))UB(S (2)).
m m m m

and

(ii) both A(s (1)) n B(s (2)) and A(s (2)) nB(s (1)) are not empty.m m m m

Then Lanke's estimator em(sm) in (1.3) is inadmissible.

Proof: Defi ne
s ~ s (1) s (2)-- e (s ) for orm m m m m

e* (, l=t (2.9)m m
P e (s (1)) + P e (s (2))]/(p +P ) if s = s (1) or s (2)
1m m 2m m 12 m m m

when em(sm) ;s Lanke's estimator in (1.3) and Pi = Pm(sm(l)) i = 1,2. It is

easy to verify that e~ is better than em and hence em is inadmissible.

Note that Lanke' s estimator em puts zero wei ght to en (sn) for sn in B(s m( 1))

and B(Sm(2)) whereas the estimator in (2.9) assigns positive weights. Note

also that the estimator in (2.9) is Lanke-type estimator with a different choice

of Qr In fact,
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Q (s -s I's) for s e:A{s (1))nA\(s (2)) and s = s (1) orS (2)
kmnn n m m m m m

Q*{ s _s IS)
k m n n

Qk{sm-snlsn) for sm f sm(l) or sm(2)

= {Qk(S (1)-s Is )pplp for s = s (1) and Sne:A(Sm{1)n B{Sm(2))
m n n 1+ 2 m m

P
Q {s (1)_s Is )_2_ for sm = s (2) and s e:A(s (1)) n B(s (2))

k m n n Pl+PZ m n m m

P .
1 for s = s (1) and s e:A(S (2)) n B(s (1))

Pl+P2 m m n m m

P
2 for s = s (2) and s e:A(S (2)) n B(s (1))

Pl+P2 m m n m m

The conditions for applicability of the above theorem mean that every Sne:A(Sm(1))

UA{s (2)) is a subset of both s(l) and s (2). Lanke's estimator seems to distinguishm m m

between the two samples sm(l) and sm(2) while using en(Sn)' On the other hand,

the revised estimator e~(sm) does, in fact, the 'averaging' or 'unordering ' and,

consequently, performs better than that of Lanke. The generalization of this

result to other complicated I structures , is not difficult and hence is not included

here. However, the improved estimator is seen to be again a Lanke type estimator

with a revised extension rule Qt but with the same over-all sampling design Pm'
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3. CONCLUDING REMARKS

The following observations have been made in this paper.

(a) Lanke's formula yields a strategy (Pm' em) which is better than any given
strategy (Pn, en) irrespective of the choice of the extension rule Qk where
m = n + k. Also, for any given strategy (PnUPk,e) governed by a combination
of two independent sampling designs Pn and Pk, there exists a strategy
(P~, e*) which performs better.

(b) It is difficult to set out the estimator at the initial stage as the
ordering is not generally preserved by Lanke type improved estimators.

(c) Lanke's formula may sometimes lead to inadmissible estimators due to faulty
selection of the extension rule Qk. The structure of-the samples underlying
Pn and Pm may be studied and suitable recommendations made in some cases.

The following problems need further investigation:
(i) Order-preserving improved estimators using suitable/given extension

rules.
(ii) Admissible improved estimators using suitable given extension rules.

As mentioned earlier, Sinha (1980) and Sengupta (1982) have some interesting

preliminary results on characterizations of original sampling strategies ensuring
(ii} with the extension rules given by SRSWOR designs. Is it possible to construct
improved estimators in general terms which are essentially different from those
given by Lanke's formula?
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