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Abstract

Ensemble and temporal parameter estimators are developed for linear

and nonlinear stochastic differential equations driven by both Wiener

and Poisson processes. Linear moment recursion relations are obtained for

the stationary moments of the process. Consistency and asymptotic

normality of the resulting ensemble estimators are demonstrated. The

temporal estimators, i.e., using a single temporal record, are shown to

coincide with maximum likelihood estimators in the special case of linear

systems driven by Wiener noise.
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1. Introduction

This report is concerned with estimating the parameters of a class of

linear and nonlinear stochastic differential equations driven by Wiener

and Poisson processes. Specifically, we consider two models with a polynomial

drift term. The first model (1) has state-dependent noise, while the

second (2) has an additive noise term.

The first model is:

(1) dx = -Y (x ) dt + xt dn ,
t t· t

dn = cr dW + a (dP - A dt),
t t t

d
where y(x) = 6

0
+ 6

l
x + + 6

d
x , 6

0
1 0, 6

d
> 0, W

t
is a standard

Wiener process (zero mean and variance t), P is a homogeneous Poisson process
t

with intensity A and unit jump size, and cr, a are constants. We assume

the two noise processes, Wt and P
t

, are independent of each other and of

the initial condition x .o
The second model is similar to the first:

(2)

dn
t

= cr dWt + a (dP
t

- A dt),

with all conditions identical to (1) except that eO is no longer constrained

to be nonzero.

Systems of this form, (1) and (2) have been used as models for a number

of physical and biological processes (see, for example, Arnold and Lefever,

1981). The polynomial structure of y permits the modelling of systems with

multi-model stationary distributions. For example bistable systems can be

modelled with y(x) as a cubic polynomial, see Kipnis and Newman (1985),

Cobb and Zacks (1985). State-dependent noise, as in (1), has been applied

to a variety of nonlinear systems (population growth: Hanson and Tuckwell

(1981); optimal harvesting: Ryan and Hanson (1985); economics: Malliaris and
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Brock (1982); neural models: Tuckwell (1979). Wilbur and Rinzel (1983).

Hanson and Tuckwell (1983). Smith and Smith (1984); overview of Poisson

models: Tuckwell (1981)).

Let f(x.t.xO) denote the transition probability density function (pdf)

for the Markov process x
t

' given the initial value xo. With 6d > 0 the

transition pdf approaches a nondegenerate pdf. denoted by f*. as t + 00.

The stationary density f* is independent of x
O

.

show that the moments of f* satisfy a linear recursion relation which

depends only on the parameters 8
0

, . .. , 6d' 0 • A, a. This recursion relation

permits the construction of an estimator of the parameters (6
0

, ... , 6 )
d

if A. a and o are known. This estimator is shown to be consistent and

asymptotically normal. Since this estimator is constructed from i.i.d.

samples of the ensemble, we refer to it as an "ensemble" estimator. The

problem of estimation from a single temporal record is then addressed.

This report extends earlier results on versions of (1) and (2) with

Wiener input alone (Cobb et al., 1983; also see Lanska, 1979), and with

Poisson input alone (Smith and Cobb. 1982).

2. Estimation from observations of an ensemble

In this section. we derive linear moment recursion relations for

models (1) and (2) and construct ensemble estimators for 8 based on these

relations.

Theorem 1 (Moment Recursion Relations).

Let ~ denote the nth noncentral moment of f*. the stationary pdf.

For models (1) and (2) these moments satisfy a recursion relation for

n = 0. 1. 2•... that is linear in terms of~. For model (1).
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d
(3a) r e· m. = 1/1 m

1 l+n n+l n+l
i=O

with

k 2
1/Ik = A((l + a) - l)/k + (k-l) a 12.

For model (2),
d n

(3b) 2 m 12 + r (n) 1\ mn_
kr e. m = n a

i=O
1 i+n n-l k=O

k

with

k+la
k

= A a I(k+l).

Proof.

Model (1):

Let a denote the operator for partial differentiation with respect to x.
x

It can be shown (Gihman and Skorohod, 1972, p299) that f(x,t,xo) satisfies

the forward Feller-Kolmogorov equation

(4)

The stationary

conditions are

-A f + A f(x/(l+a)) 1 Il+al.

pdf f* is the solution of dtf = 0 in (4). The boundary

k *d f (+ ~) = 0 for k = 0, 1, 2, Now let Fv{f} denote
x -

the Fourier transform of a function f, i.e.,

F {f}
v

d
= J

~

f(x) exp(-iv x) dx,
-~

where v is the transform variable, and i is the unit imaginary number.

Taking the Fourier transform of our equation for f*, we· obtain

(5)

=A (F {f*} - F (1 ) {f*}),v v +a
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where for the last term we have used the scaling property of the Fourier

transform, i. e.,

F {f(bx)} = l/lbi Fv Ib {f(x)}
v

for some constant b. The LHS is evaluated using

F)a?Cf(x)} =(iv ) F if}
v

and
m m m F, if}F {x f(x)} = i av v v

to obtain

(6) ( iv) y ( i a ) F {f*} + r/ /2 ( iv ) 2 (i a ) 2 F" {f *}
V V 'J v

= A (Fv{f*} - FV(l+a){f*}).

we can now derive the moments m by using the well-known fact that
n

mn = (idv)n F{f*} when v = o.

Using the (iav)n operator on both sides of (6), the RHS becomes

which simplifies to

n
A[l - (1 + a) ] m

n

For the LHS of (6), we use the product rule of differentiation, namely

n n ~ n-k k
a (u·v) = l: (k) (a u) (a v)

x k=O x x

*to obtain (Sl + S2) Fv{f }, where

S = (-n) (ia )n-l y(ia ) + O(v),
1 v y

and

S = 02/2 n(n-l) (ia )n + O(v).
2 v
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When v = 0 the LHS becomes

d 2
-n r 8k I1l k+n_l + 0 /2 n(n-l) mnk=O

so, combining these results and shifting the index by 1, we obtain

A /(n+l) [(l+a)n+l - 1] m + n 0
2/2 m

n+l n+l

- ,I. m for n = 0, 1, 2, ...- 'f'n+l n+l'

the desired result (3a).

For model (2), the corresponding Feller-Kolmogorov equation is

a f = a [y(x)f] + 0
2
/2 a2f + A (f(x - a) -f).

t x x

Except for the term 0
2/2 a2f , this equation is identical to the one in

x

Smith and Cobb (1982, p703). The result follows from a minor adjustment

of their development.

Remark. These results carryover easily to finite sums of independent

Wiener and ·Poisson noise.

A concrete example gives some

the relationship. Let y(x) = 80 +

feeling for the mechanics of the use of
2 3

8l X + 82
x + 8

3
X , a cubic polynomial.

We now obtain four equations for the four unknowns 8
0

, 81 , 8
2

and 83 in

terms of the parameters of the noise and the zeroth through sixth moments

of f*.

Ensemble estimators of 8 can be derived from the moment recursion

relations as follows. Suppose that {X
k

}, k = 1, t are independent random

variables, each with density f*. The moment recursion relations for

both (1) and (2) reduce to
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M e = WB,

where

e = [eO' e- l , ... , ed ] I ~

with (') indicating transpose;

M' .1J = mi + j _2

t
" i+j-2= lit ~ Xk '

k=l

Wij = mi °ij'

with O.. being the Kronecker delta,
1J

(Modell)

=

and

m..
l-J

for j > i

for j < i.

(Model 2)

=

Theorem 2.

B. = ljJ •
J J

{::-:
for j r 2,

for j = 2.

(Modell)

(Model 2)

Under models (1) and (2) the ensemble estimator e
A_lA

= M WB is consistent
A

and Ir (e - e) is asymptotically normal N(O,V), where V is a dxd matrix

that satisfies
A A A

[MVM] .. = E{([WB]. - [Me]l') ([WE]. - [Me].)}
lJ 1 J J

Proof: (following Cobb et al., 1983, Theorem 2)

Consistency:
d

Let p (x) = a + a x + ... + a x
a Old Because x is a random

variable with a continuous nondegenerate density, we have E[p~(X)] = a'M a > 0

for any vector a ~ O. From this it follows that M is positive definite and

invertible. Furthermore, M is invertible w.p. 1 by a similar argument, as
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A A All
long as n > d. Since M~ M and W~ W, we also have (M)- ~ M- and

A -1 A -1 A 0
(M) W~ M W. Consistency (8 ~ 8) follows immediately because B is

nonstochastic.

Normality: We have I~ (M - M) = 0 (1) and 8 - 8 = 0 (1). Rewrite
---A.c...-<.- p P

It M (8 - 8) as follows, collecting terms of similar order in probability:

It M (~ - 8) = It (WB - M8) - Ir (M - M) (6 - 8)

Each entry of the second term on the right-hand side is Op'(l) opel) =

where ('), indicates transpose. Thus
A A

ItM (8 - 8) -It (WB - M8) ~ 0,

and

o (1),
P

-1
since M

A _ -1
It (8 - 8) -/~ M (WB-

is invertible. The vector

~fl)~ 0,

-1 .-
It M (WB - M8) can be written as

R.

k:1 h(xk)/If , where hex) is a vector of polynomials in x. Note

that E[h(X)] = 0, due to the linear moment recursion relations. Let
.-

V.. = E[hi (X) h.(X)]. Then If (8 - 8) is asymptotically N(O,V) by the
1 J J

multivariate Central Limit Theorem.
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3. Estimation from continuous observations

In this section we present a method for estimating the coefficients

of (1) and (2) given continuous observations of the stochastic process

x on [0, T]. Explicit maximum likelihood estimation is not possible
t.

because the noise process is a mixture of Wiener and Poisson noise. We shall

instead construct an estimator which reduces to the MLE when there is no

Poisson noise, and which always satisfies a minimum mean squared error

criterion. This estimator is best developed in a slightly more general
, d I

context. Let 8 = [8
0

, 8
1

, ... , 8d] and g(x) = [1, x, ... , X] with

8
0

~ 0, 8d <0, and d odd. Suppose that x
t

is a stochastic process which

satisfies the stochastic differential equation
,

dx = 8 g(x) dt + cr(x) dn ,
t t t

where cr(x) is a smooth non-anticipatory function, cr(x) ~ 0 if x ~ 0, and n
t

is, as before, a ~ixture of an arbitrary number of independent Wiener and

compensated Poisson processes, such that the process x is ergodic. We
t

shall make use of a weighting function introduced by Lipster and

Shiryayev (1977, p. 274):

vex) = {o
1/cr2 Cx)

if cr(x) = 0

otherwise.

Consider the function ~Qt(x,c) defined by

2
~Q (x,c) = [(~x - c'g(x ) ~t)/crCx )]

t t t t
2

- [~x /cr (x )] ,
t t

x, and where ~x ~
t

that for W E: n' and- x
t

x
t+~t

where the right hand side is evaluated at x =
t

The function ~Q (x,c) has a graph
t

t E: [0, T-~t], is a paraboloid with a single minimum. The ratio ~Q Cx,c)/~t
t

converges in probability as ~t + 0 to the stochastic differential

dQt(x,c) = - 2 c' g(x
t

) V(x
t

) dX
t

+ c

with the RHS evaluated at xt = x.

[g(x )g(x )']c vex ) dt
t t t
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The mean squared error of c for the stochastic process x on [O,t]
t

is given by

T
MSE(c,T) = fo dQt(Xt,C)

= - 2 c' f~ g(x
t

) V(X
t

) dX
t

+ c'[f~ g(xt)g(xt )' V(X
t

) dt] c.
A

Let S (w) be the solution of V MSE(c,T) = 0 for fixed w € ~.
T c

Thus
A T -1 T
STew) = [fo g(Xt)g(Xt ), V(X

t
) dt] [fo g(xt ) v(xt ) dx

t
]·

In the special case in which cr(x) = x, d = 1, and A = 0, we have an

estimator ST which coincides with the maximum likelihood estimator (see

Basawa and RaQ (1980, Theorem 5.1) for example). In the general case

the consistency of the estimator depends crucially on the ergodicity of

the process.
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4. Discussion

In the preceding sections we have considered both ensemble and temporal

estimation. There are interesting connections between the two methods.

If the systems described by (1) and (2) are ergodic and satisfy the

appropriate mixing conditions, then the moment recursion relations of

Section 2 can be used with temporal moments (instead of ensemble moments)

to generate estimates of the parameters. It is interesting to observe that,

in the case of Wiener noise only, this method coincides with the "minimum

contrast" procedure of Lanska (1979). Lanska showed that the minimum

contrast estimates are strongly consistent and asymptotically normal.

With respect to the question of existence and uniqueness of solutions

for (1) and (2), note that the usual Lipschitz condition is not met by the

function y(x), except when d = 1. However if we modify y so that it reads

yeA) + y (A) (x - A) for x > A,
x

y(x) = y(x) for B < x < A,

y(B) + y (B) (x - B) for x < B,
x

where yx denotes differentiation with respect to x. The solutions of

the modified process coincide exactly with the solutions of (1) and (2)

up until a random hitting time T, when xt first reaches A or B. Using

this construction and a theorem of Kallianpur and Wolpert (1984), a

heuristic argument for the existence and uniqueness of solutions for (1)

and (2) in the presence of both Wiener and Poisson noise is obtained.

In the foregoing we have assumed that the noise process has already been

characterized, and that we need only to estimate the parameters of y(x).

Jointly estimating all parameters is a problem that has been addressed in

some special cases by Lansky (1983) and Habib (1985).
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