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Summary

This paper describes the use of bootstrap and permutation methods for

lhe problem of testing homogeneity of variances when means are not assumed

equal or known. The melhods are new in this context, and nontrivial, since

lhe composite null hypothesis involves nuisance mean parameters. They allow

the use of normal-:'theory test statistics such as F = sUs~ without the

normality assumption which is crucial for validity of critical values obtained

from the F distribution. In a Monte Carlo study the new resampling methods

are seen to compare favorably with older methods, except in the case of

heavily skewed distributions.



1. Introduction

The main point of agreement in the numerous articles on testing

homogeneity of variances is the non-robustness of test procedures derived

from the likelihood ratio statistic assuming normal distributions. For example,

Box and Andersen (1955), Miller (1968), Gartside (1972), Hall (1972), Layard

(1973), Brown and Forsythe (1974), Keselman et al. (1979) and Conover et al.

(1981) all demonstrate the sensitivity to departures from normality of Type I

error rates for either the two-sample F-test or the k-sample analog due to

Bartlett (1937). There is considerably less agreement among these authors

however, as to which alternative procedures are best in terms of both

robustness to variations in the underlying distribution and ability to detect

departures from the equal variance hypothesis.

In motivating their study, Conover et al. (1981) noted the lack of

consensus in the literature concerning alternative procedures, and commented

that because of this confusion "many users default to Bartlett's" procedure.

In fact examples of such confusion can still be found in the biological

literature, as in Schiffelbein and Hills (1984, 1985), where interval estimates

for variances were obtained using a jackknife procedure because of possible

nonnormality , but variances were apparently compared using the

normal-theory F-test.

To resolve the problem of conflicting recommendations concerning

alternatives to the normal-theory tests, Conover et al. (1981) undertook a

large Monte Carlo study. Their stated objectives were to provide a list of

tests with stable Type I error rates under nonnormality and small and/or

unequal sample sizes, and to compare power for tests found to be robust in

this respect. They compared 56 tests under 91 situations (corresponding to

combinations of distribution types, sample sizes, means and variances), and
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thus provided considerable information concerning the relative performance of

a large number of tests. Absent from the list of 56 tests, however, were

resampling procedures other than the jackknife.

The objective of this study was therefore to investigate the use of

bootstrap and permutation methods in testing equality of variances. Classical

permutation procedures can be used for testing homogeneity of variances for'

the situation where means are ascumed known or equal, but not for the more

realistic situation where means are unknown and possibly unequal. As

described in Section 3, this is because the usual permutation argument is

destroyed when the null hypothesis is not one of identical populations. For

this more interesting variance testing problem, we show in Section 3 how to

construct permutation and bootstrap procedures which have approximately the

correct level in small samples and exact level asymptotically.

Additional motivation for our study related to the use by Conover et a1.

(1981) of extremely skewed and leptokurtic distributions to evaluate

robustness of test size. Our concern was that this could have led to the

selection of unnecessarily conservative tests, with less than optimal power in

realistic situations.

Requiring robustness of test size for distributions more skewed than the

extreme value (obtained by log-transforming the exponential) does not seem

important from a practical viewpoint. This is because most researchers know

when they are dealing with highly skewed variables and will apply a suitable

transformation. In fact, Conover et al. (1981) in their own real data example

analyze log-transformed values. In many applications power should not be

sacrificed for unnecessary robustness of test size. Examples include testing

f?r variance homogeneity to justify pooling samples as in Zammuto (1984), and

testing for treatment effects on variance, as when increased uniformity is a
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desirable result. The latter situation arises in quality control of

manufacturing processes (Nair, 1986), in the study of management practices in

commercial poultry operations (Fairfull, Crober and Gowe, 1985), and in the

study of educational methods (Games, Winkler, and Probert, 1972). We

therefore concentrated on situations less extreme than the skewed

distributions in Conover et al. (1981), to determine whether bootstrap or

permutation methods could provide robustness of Type I error rates and

increased power.

The new resampling procedures, described in Section 3, were compared

by Monte Carlo simulation with three of the procedures studied by Conover

et al. (1981). These latter procedures are Miller's jackknife (Miller 1968), the

ANOVA F-test on absolute deviations from the median (Levene 1960, Brown and

Forsythe, 1974) and a variation of Box and Andersen's (1955) M~. We define

and discuss these three tests in Section 2.

Results of the Monte Carlo study are given in Section 4. They show that

bootstrapping of F = sUs~ and Bartlett's statistic results In a valid and

powerful test procedure except for heavily skewed data. Moreover, the

results show that bootstrapping works well with two other statistics and thus

can be recommended as a general technique in the variance testing problem.

Real data examples are presented in Section 5 and concluding remarks

are given in Section 6.

2. Some Previously Studied Tests for Equality of Variances

Let Xi 1 '''''X i n , i = l, ... ,k represent k independent samples, where

Xi j' j = l, ... ,n i are independent and identically distributed with cumulative

distribution function Go ((x-j.l i) / (T i) having finite fourth moment. The problem

of interest is to test Ho: (T~ = ... = (T~.

3



Of the 56 tests for equality of variances studied by Conover et ala (1981),

many are more properly called tests for equal spread or dispersion, including

the three procedures said to be best on the basis of robustness and power.

These three tests, denoted Levl:med, F-K:medX 2 and F-K:medF, are each based

on absolute deviations from the median IXi j - Xi I. Levl:med is the usual

one-way ANOVA F-statistic for comparing k means, applied to the

IXi j - X ii, and the other two are normal scores linear rank statistics (see

Conover et ala 1981).

Of the procedures ruled out by Conover et ala as being too liberal with

the skewed distributions, the best, denoted Bar2, is a modification of

Bartlett's statistic that allows for non-zero coefficient of excess,

72 = f32 - 3, of the cdf Go. Conover et a!. justified dismissal of Bar2 by the

statement that when only symmetric distributions were considered, power for

Bar2 was about. the same as for Levl:med, F-K:medX 2 and F-K:medF. This is

not completely borne out however, by empirical results in Conover et ala

(1981), and elsewhere, that indicate there are situations where Levl:med and

the F-K:med statistics lack power.

One such situation where Bar2 has better power is discussed by Conover

et ala in their conclusions, and is evident in results for

(nlln2,n3,n4) = (5,5,5,5) in their Tables 5 and 6. This is the case where ni

are small and odd. With respect to Levl:med, O'Brien (1978) explained that

the extremely conservative performance for ni small and odd was due to zero

values of IX i j - Xi I inflating the estimate of within-group variance in the

denominator of the F-statistic. Suggestions for deleting a random

observation in each group (O'Brien, 1978) or the middle observation in each

group (Conover et ala 1981) do not seem entirely satisfactory because they can

result in a too-liberal test. This rather bizarre property is illustrated by
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results for Levl:med for sample sizes (4,4,4,4) and (5,5,5,5) and 1000 Monte

Carlo replicates using normal and exponential distributions. In the null case,

for a test at nominal level .05, observed size at the normal was .074 and .003

for (4,4,4,4) and (5,5,5,5) respectively, and at the exponential was .100 and

.015 respectively.

Another situation where statistics based on I Xi j - Xi I can be expected

to lack power is with data arising from short-tailed distributions. Empirical

results show the jackknife statistic to have considerably better power than

Levl:med at the uniform (O'Brien, 1978) and somewhat better power at the

normal for k = 2 (Brown and Forsythe, 1974).

Thus, while it is evident that Levl:med is remarkably robust, unqualified

recommendation of its use, as in Conover et ale (1981), does not seem

appropriate, and ignores the possible advantages of moderately robust tests,

such as Bar2 or the jackknife, for data that are not markedly nonnormal (see

for example, Gad and Weil (1986) for lists of such variables). We therefore

included Bar2 and Levl:med (which is more familiar and easier to interpret

when the groups correspond to structured treatments than the linear rank

statistics) in a Monte Carlo study aimed primarily at investigating resampling

methods. Layard's (1973) generalization of Miller's (1968) jackknife was also

included, partly to determine whether bootstrapping could be used to improve

its robustness.

For clarity, these three statistics are defined below, with a few comments

concerning their properties. Considerably more detail can be found in

O'Brien (1978) concerning properties of Levl:med and the jackknife.

Levl:med. The test statistic is
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(2.1)

where Zij = IX ij - Xi', Xi is the median of sample i,

i

- 1Z. =
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1

r
j

Z ..
IJ

Z = ~ r r z..
i j IJ

and N = r n.
1

F(Z i j) is compared to quantiles from the F distribution with k - 1 and N - k

degrees of freedom.

Levl:med is a modification of Levene's (1960) Z-test, obtained by taking

absolute deviations about the median rather than the mean (see Miller, 1968;

Brown and Forsythe, 1974). Empirical results in O'Brien (1978) concerning the

expectation, variance and within-group correlations of the Zi j suggest that

ANOVA assumptions will not be seriously violated, hence, null performance of

F(Z i j) will generally be good, for n i > 8 or so. However the conservative

nature of the test for n i small and odd should not be ignored.

Jackknife or Mill. The test statistic is F(U ij ) with F(') as in (2.1), with

U.. = n. log s~ - (n. - l)log s~.
IJ 1 1 1 IJ

s ~ = r (X. . - X.) 2I (n. - 1)
1 j lJ 1 1

and

2 2 - 2
s .. = [(no - l)s. - n.(X .. - X.) ICn. - l)]/Cn. - 2)

IJ 1 1 1 IJ 1 1 1

Critical values are obtained as for Levl:med.

F(U i j) is Layard's (1973) k-sample generalization of Miller's (1968)

(2.2)

two-sample jackknife procedure. O'Brien (1978) notes that the null behaviour

6



of this statistic is adversely affected, for unequal sample sizes, by the

dependence on nj of both the mean and variance of the pseudovalues U i j'

Empirical results in O'Brien (1978) showing positive within-group correlations

between the U j j for the exponential distribution explain the liberal nature of

this test at the exponential.

Bar2. The test statistic is

TI [CO + .y2/2)]

where TIC is Bartlett's statistic,

T = (N - k)log{r (n. - l)s~/(N - k)} - r (n. - l)log
ill i 1

C = 1 + 3(~-'l) [r n~-l - N~k] ,
i 1

and

(2.3)

r r (X ..
.. lJ

= 1 J
1'2 [reX .. ­

i lJ

- 3 .

Critical values are obtained from the chi-square distribution with k - 1

degrees of freedom.

Bar2 is similar to Box and Andersen's (1955) Mu the difference being that

Box and Andersen omit the correction factor C and estimate 1'2 using

k-statistics. This is not at all clear in Conover et al. (1981), who refer to the

Box-Andersen test as being a permutation test which they excluded from

their study because of poor null performance reported by Hall (1972). We

generated empirical reuslts which convinced us that results for M1 in Table 3

of Hall (1972), including null levels cited by Conover et al. (1981), are

incorrect. Our results also indicated that estimating l' 2 as in Bar2 using
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Layard's (1973) pooled estimate of kurtosis, instead of using k-statistics,

improved null performance.

3. Bootstrap and Permutation Procedures

Standard permutation methods can be used with any test statistic in the

k-sample problem provided the null hypothesis is that all populations are

identically distributed, i.e., HI: G1(x) = G2(x) = ... = Gk(x). This null

hypothesis is appropriate in the location problem with equal variance,

G i (x) = Go((x - Pi )/0'), i = l, ... ,k. It also applies to the variance testing

problem with equal location, Gdx) = Go((x - p,)/O'j), i = l, ... ,k. HI does not

apply, however, to the more common situation of testing for variance

differences without assuming equal location.

Before considering this latter null hypothesis, we briefly review results

for testing HI' The usual permutation approach is to obtain all

M =N!/(n1!n2!"'nkl) sets of k samples of size (n ll ,nk) taken without

replacement from the pooled data S = {X i j' j = l, ,n if i = l, ... ,k} and compute

the test statistic T i for each set. Let To be the statistic calculated from the

original unpermuted data in S. If HI is to be rejected for large values of T,

then we would reject HI at level (X if To is greater than or equal to (I - Ol)M

of the T i values. Simple arguments show that this procedure has exactly

P(Type I errorlH r ) = (x. See Bell and Sen (1984) for a recent survey of

permutation procedures. Bootstrap procedures are similar but based on

sampling from S with replacement. In general, bootstrap tests do not have

exact level (X but the level converges to (X in large samples. See Efron (1979)

for an introduction to bootstrap procedures.

The focus of this paper is on tests for equality of variance or

dispersion in the presence of unknown and possibly unequal loc'ation. The

distribution functions are G i (x) = Go((x - J.l d/O' d where Go is also unknown,
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and the null hypothesis Ho: O'r = O'~ = ... = O'~ is not equivalent to the null

hypothesis HI of identical populations. This lack of equality under Ho

destroys the usual permutation argument, and in fact both permutation and

bootstrap procedures would have incorrect a levels even in large samples.

A straightforward remedy is to adjust the samples so that they have

equal locations. Our approach is to resample from the aligned set

s = {X" " - X", j = 1, ... , n., i = 1, ... , k}
lJ 1 1

(3.1)

- -
In skewed samples it appears useful to replace Xi by Xi' the ith sample

median. Neither permutation or bootstrap tests based on S have exact level a

under Ho ' but new theory in Boos, Janssen, and Veraverbeke (1986) shows

that the levels converge to a in large samples. Since neither approach has

exact level a, we prefer to emphasize the bootstrap approach because it is

more intuitive and more closely associated with random sampling.

The basic idea behind bootstrap test procedures. is to "mimic the Ho

sampling situation as closely as possible. Bootstrapping from S of (3.1) can

be viewed as drawing sets of iid samples {Xf 1 , ... ,xf n. , i = l, ..·.,k} from the
I

"pseudo-population" whose distribution function is

I k n i= N r r I( X. " - X. i x) •
i=l j=l lJ 1

Since GN(x) ~ Go(x/O') under Ho: O'~ = O'~ =... = O'~ = 0'2, the distribution of a

test statistic T based on iid samples from GN should be similar to that based

on Go (x/O'). The latter is the null distribution of interest for variance type

test statistics which are invariant to location shifts.

In theory one can evaluate T at all the M= (N) N equally likely sets of

samples from GN, T~, ... ,T~, construct the exact distribution of the test

statistic under GN, and compute the bootstrap p value
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In practice, B « M sets of random samples are drawn from GN, Tf, ... ,Tf are

computed, and

is used as an estimator of PN' Since this is binomial sampling,

Var PN = PN(l-PN)/B, and the range 1000 ~ B ~ 10000 works well in practice.

For the Monte Carlo study of Section 4 we have used the bootstrap

approach to get critical values in the two-sample case for the usual F

statistic F = s~/s~, for a similar ratio of robust dispersion estimators, and for

Miller's jackknife t. In addition we have used the permutation approach from

S with F = sUs~. For the case of four independent samples, we have

bootstrapped Bartlett's test statistic and the jackknife F statistic, both

described in Section 2.

4. Monte Carlo Results

Test statistics described in Sections 2 and 3 were compared in the k = 2

and k = 4 sample situations for a variety of sample sizes, population

distribution types, and null and alternative hypotheses. We shall discuss the

k = 2 and k = 4 situations separately, after mentioning the following common

features.

1. In every situation N = 1000 independent sets of Monte Carlo

replications were generated. Thus, empirical test rejection rates

follow the binomial (N = 1000, p = probability of rejection)

distribution.
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2. P values were computed for each test statistic and rejection of Ho

at c< = .05 means p value i .05.

3. Recall that B denotes the number of bootstrap replications within

each of the N = 1000 Monte Carlo replications. It was too costly to

let B = 1000 as suggested in Section 3. Therefore, we used a

two-stage sequential procedure for bootstrap and permutation tests:

a) start with B = 100; b) if PB > .20, stop; c) if PB i .20, take 400

A

more replications and use all B = 500 replications to compute PB.

4. Whenever nj < 10 for at least one sample size, the smooth bootstrap

(Efron, 1979, p. 7) was used for all bootstrap resampling. Here this

smoothing is purely a computational device to avoid getting sample

variances with value zero.

5. Since p values were obtained, a more comprehensive check on test

statistic distribution under Ho was possible. Recall that under Ho a

p value should have the uniform (O,l) distribution. For each

statistic we counted the number of p values falling in the intervals

(0,.00, (.01,.02), ... ,(.09,.10), (.10,1.0) and computed a chi-squared

goodness-of-fit test of uniformity based on the 11 intervals. This

approach conveys more information that just reporting empirical

rejection rates for a level .05 test. (Box and Andersen, 1955, show

histograms of p values).

6. In non-null situations it can be useless to compare empirical

rejection rates ("observed power") if the null levels are much

higher than the nominal levels. Therefore, when reporting estimates

of power, we also include "adjusted power" estimates using the cell

counts described above. These are obtained by simply adding the

counts (or appropriate fraction thereof) for those cells for which
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counts sum to C( under Ro • For example, if the first 5 cells had

counts (8, 13, 14, 11, 15) under Ro ' and (164, 122, 98, 76, 62) under an

alternative R a , then the estimated true level under H o for nominal

C( = .05 is .061, the observed power under R a is .522, and the

adjusted power is [164 + 122 + 98 + 76 + (62)(4/15)]/1000 = .477.

These latter adjusted rates appear in parentheses in Tables 3 and

6. They attempt to estimate the power that would have been

obtained if the correct critical values had been used.

Two-Sample Results

Tables I and 2 give null hypothesis rejection rates for nominal level

C( = .05 and chi-squared goodness-of-fit tests on p values for sample sizes

(n 1 = 10, n2 = 10) and (nl = 5, n2 = 15) for a variety of tests in the null case

of <T~ = <T~. Table I is for three symmetric distributions, the uniform, the

normal, and a t distribution with 5 degrees of freedom (t s ). Table 2 is for

two skewed distributions, the extreme value with distribution function

F(x) = exp(-exp(-x)), and the standard exponential.

---Insert Tables 1 and 2 Here---

In both tables the usual F statistic sUs~ is the basis for the first four

rows. They differ only in the way p values were obtained. Row I

corresponds to the standard normal-theory test based on the F distribution

with n 1 - I and n2 - I degrees of freedom. Row 2 uses the F distribution

with d(nl - 1) and d(n 2 - 1) degrees of freedom, where d = [l + 72/2]-1 and

72 is given in (2.3). This test was first proposed by Box and Andersen

(1955). Rows 3 and 4 use p values obtained by bootstrapping and

permutation sampling respectively, from S of (3.1).

Rows 5 and 6 are based on Miller's (1968) jackknife t statistic which is

just the usual two-sample pooled t statistic for the log S2 pseudovalues U i j
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in (2.2). In row 5 the p values are taken from a t distribution with

nl + n 2 - 2 degrees of freedom. In row 6 the critical values are obtained by

bootstrapping from S of (3.1).

Row 7 is the Levl:med t statistic based on the Z i j of (2.1) and using a t

distributioWl with n 1 + n2 - 2 degrees of freedom. Row 8 is a ratio of robust

dispersion estimators ~1/~2 with bootstrap critical values, where O'i is the

average of the first 50% of the ordered values of I Xi j - Xi k I,

1 .s. j < k .s. ni' This "Generalized L-statistic" on Gini type absolute

differences (hence GLG) was found in Boos, et al. (1987) to perform well over

a wide range of distributions. Note that for this statistic, we chose to base

the bootstrap on samples centered with 20% trimmed means in place of the

sample means in (3.1).

Since low X ~ 0 values are desired, we see that t.he bootstrap and

permutation tests do well except at the exponential. The best test overall in

terms of X f 0 values is actually the GLG bootstrap largely because of its

performance at the exponential. The other bootstrap procedures would have

performed better at the exponential if they had also used trimmed means to

center. The jackknife t does poorly at unequal sample sizes and for skewed

distributions. As mentioned in Section 2, O'Brien (1978) explains that this is

due to unequal variances of the U i j in different size samples, and to

correlations in the U i j' Bootstrapping produces a dramatic improvement in

performance of the jackknife statistic.

Performance of the Box-Andersen test in Tables 1 and 2 is only mediocre,

and the normal-theory F t.est is of course a disaster. The Levl:med t does

reasonably well but its generally conservative levels result in higher xfo

values. Note that Tables I and 2 are for one-sided tests. Results for

two-sided tests were similar except that the GLG bootstrap did not do as
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well, especially at the uniform where it was too conservative, and the

Levl:med t had slightly lower xro values.

---Insert Table 3 here---

Table 3 gives estimates of the power of each one-sided test at

(n 1 = 10, n:z = 10) when the variance of the second population is four times

that of the first. In parentheses is an estimate of the power which would

have been obtained if correct .05 critical values had been used. The last

columns of Table 3 are averages over the five distributions. As expected,

the s:Z based tests are considerably more powerful at the uniform than the

robust tests. It is interesting, however, that the robust tests do not

dominate at the longer-tailed distributions. On average the Levl:med t comes

out worst in terms of observed power and the F bootstrap and F permutation

tests do quite well. Looking at adjusted power, Table 3 suggests that

bootstrapping costs in terms of power (row I versus row 3, row 5 versus row

6) and so does studentization of statistics (row I versus row 5). Of course

such techniques are essential to obtain valid tests based on sUsi at

distributions other than the normal.

Four-Sample Results

Table 4 gives estimated levels for nominal level ex = .05 and chi-squared

goodness-of-fit statistics for p values for six tests, four distributions, and

three sets of ,sample sizes. The normal and Laplace distributions and the

sample sizes were chosen in order to make comparisons with Conover, et a1.

(1981).

---Insert Table 4 Here---

The first three tests relate to Bartlett's (1937) statistic TIC given in

(2.3). Bar-x:Z means that a x~ distribution was used for critical values and

Bar-Boot means that the 'bootstrap approach was used. Bar2-x 2 is the
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Bartlett statistic with kurtosis adjustment given in (2.3) and using x~ critical

values.

The fourth and fifth rows of Table 4, Jack-F and Jack-Boot, refer to the

jackknife F statistic defined in (2.2) using either an F distribution or the

bootstrap for critical values, respectively. Finally, Levl:med is the F test on

the Zi j in (2.1). Note that no permutation sampling from (3.1) was tried

because we expect it to perform similarly to the bootstrap. Also, we did not

run a GLG type test because of the computation costs.

In terms of x~ 0 values, these tests seem to perform worse than the

two-sample versions in Tables 1 and 2. Bar-Boot and Jack-Boot do noticeably

worse at the exponential compared to rows 3 and 6 of Tables 1 and 2. As

before, however, these bootstrap results are dramatic improvements over

using a x 2 or F distribution. Jack-Boot seems to be the best performer in

Table 4, but recall that odd sample sizes make Levl:med-F conservative. If

one restricts attention to sample sizes (10,10,10,10), Levl:med-F is only mildly

conservative and has very good xfo values.

---Insert Table 5 Here---

In Table 5 we show the effect of using different centering estimators for

bootstrapping the Bartlett and jackknife statistics. Rows 1 and 4 repeat some

of the results for Table 4 where resampling is from S of (3.1). Rows 2 and 5

correspond to resampling from

s = {X .. - X., j = l, ... ,n., i = 1, ... ,4} , (4.1)
1J 1 1

where Xi is the ith sample 20% trimmed mean. Rows 3 and 6 of Table 5

correspond to Xi =ith sample median. Note that the test statistic is the

same for Rows 1, 2, 3 and for 4, 5, 6, only the critical values change. If

medians are used for centering, the bootstrap procedures do quite well at

the exponential but are then too conservative at the normal. The 20%
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trimmed mean appears to be a reasonable compromise between centering at

means or median. Recall that the GLG statistic had good performance in

Tables I and 2 using a 20% trimmed mean for centering.

---Insert Table 6 Here---

Table 6 summarizes estimates of the power of the tests at the particular

alternative H a : (Jf,(J~,(J~,(J~) = 0,2,4,8) averaged over the three sets of sample

sizes found in Table 4. Adjusted power estimates are in parentheses. Note

that these adjusted estimates are more variable than the observed powers

and biased downward for Bar-x 2 (a consequence of grouping p values into

intervals of width .01). Excluding Bar-x 2 , Bar-Boot has the best power

overall for either observed or adjusted power. Levl:med-F is second in

average adjusted power. Note though, that at the Laplace Levl:med-F is still

behind Bar-Boot in adjusted power, even though the mean absolute deviations

from the median used in the numerator of Levl:med are maximum likelihood

scale estimates for the Laplace. Perhaps Bar-Boot appears higher than it

should in this case due to sampling variation. It is interesting that the

studentized statistics Bar2 and Jack-F have quite low adjusted power relative

to Bar-Boot.

5. Toxicity of Calcium Edetate

Evidence of toxicity in dosed animals is often reflected by an increase

in variance of a response, because of differences among individuals in their

ability to tolerate a given dose level. Data from a study on the toxicity

(specifically teratogenicity) of calcium edetate (Brownie, et al. 1986) are used

here to illustrate the tests for homogeneity of variances for k = 5 groups.

In this study, several responses were measured on all animals (30 in the

control group, 20 in all other groups), but food consumption was monitored

on a smaller number of randomly chosen animals. Values for food
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---Insert Table 7 Here---

consumption for groups 1 to 5 (the control group and four increasing dose

levels of calcium edetate) are given in Table 7.

•
The six tests in Table 4 were applied to these data. In addition to

bootstrapping from S to obtain p values for the Bartlett and jackknife

statistics (as in Bar-Boot and Jack-Boot), we also bootstrapped from the

median-centered residuals in is. The resulting tests are denoted Bar-Boot

Med and Jack-Boot Med. For the original sample values, and for the

residuals in S, the pooled kurtosis was 4.78 (;2 = 1.78). Kurtosis of the

residuals in is was 5.01.

P values (smallest to largest) for the eight tests were .008 for Bar-x2,

.050 for Jack-F, .053 for Bar-Boot, .065 for Bar-Boot Med, .067 for Jack-Boot

Med, .122 for Bar2-x 2 and .157 for Levl:med-F. The small p value for Bar-x 2

(Bartlett's test) is partly due to leptokurtosis in sample 5 (resulting in

pooled 72 = 1.78), but Jack-F and the bootstrap procedures all give p values

near .05. The comparatively large p value for Levl:med is not due solely to

n2 =n3 = 7 (small and odd) because deleting the fourth largest value in

groups 2 and 3 (d. Conover et al. 1981) gives p = .191. Instead, the

conservative p value for Levl:med seems to be due to an extreme value (15.65)

in group 5. Deleting this observation gives s~ = 5.26, ;2 = 0.61, and p

values .009 for Jack, .013 for Bar-x 2 , .017 for Jack-Boot, .018 for Jack-Boot

Med, .037 for Bar-Boot, .042 for Bar-Boot Med, .046 for Bar2-x 2 and .060 for

Levl:med. There is no biological reason to delete this observation however,

because it represents an animal that tolerated the high dose, as did at least

two other animals in group 5 that were not monitored for food consumption.

To illustrate the use of the two-sample tests, suppose that we decide to

compare group 3 with the control group 1. The one-sided p values for the
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tests studied in Tables 1 - 3 (from smallest to largest) are .031 for the

permutation F, .035 for Box-Andersen, .052 for the bootstrap F, .056 for the

GLG bootstrap, .074 for the normal-theory F test, .085 for the jackknife

bootstrap, and .089 for the Levl:med t. For the bootstrap and permutation

procedures, p values were based on B =10,000 resamples. It is interesting

that all the resampling tests except for the jackknife have lower p values

than the normal-theory F test. Apparently, these two samples together

suggest shorter tails than the normal (;2 = -0.68). Even so, the robust GLG

bootstrap has good power.

6. Conclusions

Can the bootstrap method be trusted to determine critical values or p

values when testing homogeneity of variance? Tables 1, 2, and 3 give strong

support for its use in the two-sample problem. It performed well for the F

ratio sUs~, for the log S2 jackknife t statistic, and for a ratio of the robust

GLG dispersion estimators. It should work well for other statistics and

distributions.

For more than two samples the picture is not as clear. The results

suggest that skewed distributions are relatively more harmful to a-levels of

the bootstrap procedures for k > 2 compared to k = 2. With skewed

distributions it is wise to center with trimmed means before resampling. The

power advantages of Bar-Boot should continue to hold for this centering.

However, our results reinforce conclusions in Conover, et al. (1981) concerning

the remarkable robustness of the Levl:med a levels. Thus when validity is

more important than power and skewed data are expected (and especially with

even sample sizes nj 2 6), use of Levl:med is very appropriate.

Finally, our results do not represent an exhaustive study of the

bootstrap method in testing variance homogeneity. Generalizations to
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problems where groups correspond to a factorial treatment structure are

possible. The robust Levl:med also generalizes nicely to such problems, but

as noted in O'Brien (1978) its use supposes a model with additive treatment

effects on average absolute deviations. An advantage of the bootstrap

approach is that it can be applied to the statistic of interest for a given

model, and use of an arbitrary dispersion measure is avoided.
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Table 1. Estimated Levels of One--Sided oc .OS Tests under HO: 2 2= 0"1 = 0"2
for Symmetric Distributions

Uniform Normal t s

(n l tn2) = (lOtIO) (St IS ) (lOtIO) (St 15 ) (lOtIO) (5 t lS)

.OS 2 .OS 2 .05 2 .OS 2 .OS 2 .05 2
XlO XlO XlO XlO XlO XlO

F
2 2= s/s2

F table .014 SO.2 .026 20.4 .OSS 6.0 .OS2 10.3 .104 101. 7 .071 21.4

Box-Andersen .048 9.4 .084 60.0 .069 12.3 .079 40.4 .OSO 16.4 .048 10.2

Bootstrap .03S lS.3 .032 19.0 .OS6 S.9 .04S 7".9 .OSO 13.1 .035 6.7

Permutation .041 13.4 .048 6.1 .OS8 3.4 .OS8 10.8 .048 11. 7 .042 lS.2

Jackknife

t table .029 20.6 .063 S8.6 .OS4 9.6 .078 57.2 .053 6.0 .06S 11.2

Bootstrap .OSO 10.3 .OS2 9.7 .OS8 14.S .058 6.0 .047 9.S .043 9.4

Robust

LevI :med t .03S 10.8 .070 25.4 .047 8.9 .063 42.4 .042 10.8 .039 lS.4
GLG Bootstrap .024 21.1 .033 11. 9 .042 9.9 .044 13.7 .041 16.2 .03S 11.4

Note: Estimated levels have standard deviation near [(.9S)(.05)/1000J-% .007. 2 90%= XlO
critical value is 16.0. Bootstrap and permutation are from pooled samples after

subtracting sample means except for GLG which uses 20% triIIDDed means.



Table 2. Estimated Levels of One-Sided ~ = .05 Tests under HO:
for Extreme Value and Exponential Distributions

Extreme Value Exponential

(n l ,n2) = (10,10) (5,15) (10,10) (5,15)

.05 2 .05 2 .05 2 .05 2 Average 2 forXlO XlO XlO XlO XlO

2 2
Tables 1 and 2

F = s/s2

F table .095 75.8 .078 38.6 .148 417.9 .152 270.7 101. 3

Box-Andersen .078 45.6 .050 12.8 .091 72.8 .076 34.0 31.4

Bootstrap .058 25.6 .047 3.0 .078 27.0 .070 22.9 14.6

Permutation .069 22.0 .055 5.7 .091 113.3 .082 44.8 24.6

Jackknife

t table .066 19.0 .063 44.8 .086 95.2 .098 129.5 45.2
Bootstrap .057 19.2 .042 13.8 .071 27.2 .069 18.9 1:L9

Robust--
Levl:med t .046 3.9 .046 23.1 .046 6.5 .038 28.0 17.5
GLG Bootstrap .046 14.4 .039 12.9 .052 10.8 .045 13.7 13.6

Note: Estimated levels have standard deviation near [(.95)(.05)/1000]-% .007. 2 90%= XlO
critical value is 16.0. Bootstrap and permutation are from pooled samples after

subtracting sample means except for GLG which uses 20% trimmed means.



Table 3. Observed and Adjusted Power of One'-Sided IX = .05 Tests under

H
a

: a~ = 4a~, n l = 10, n 2 = 10

Uniform Normal t 5 Ext.-Value Exponential Average

F
2 2= sl/s2

F table .70 (.88) .60 (.58) .61 (.43) .61 ( .47) .58 (.29) .62 (.53)

Box-Andersen .77 (.78) .57 ( .48) .49 ( .49) .53 ( .42) .40 (.24) .55 ( .48)

Bootstrap .72 (.81) .52 ( .49) .46 (.46) .49 (.46) ..42 (.31) .52 (.51)

Permutation .74 (.78) .52 ( .49) .46 ( .47) .50 (.42) .43 (.29) .53 ( .49)

Jackknife

t table .78 (.85) .52 (.50) .45 ( .44) .46 (.41 ) .37 ( . 25) .52 ( .49)

Bootstrap .79 (.79) .50 (.46) .40 (.41 ) .42 ( .40) .29 (.21) .48 ( .45)

Robust

LevI: med t .57 (.64) .46 (.47) .38 (.42) .40 ( .43) .29 (.31) .42 ( .45)

GLG Bootstrap .59 (.72) .44 ( .48) .40 (.43) .44 ( .46) .37 (.35) .45 ( .49)

Basic entries -Yo .016. In parenthesesNote: have standard error bounded by (4000) =
are estimates of power for the tests with correct .05 levels.



Table 4. Estimated Levels of a .05 4--sample Tests under HO: 2 2 2 2= 0'1 = 0'2 = 0'3 = 0'4

Normal

(n1 ,n2 ,n3 ,n4 ) = (5,5,5,5) (l0, 10, 10, 10) (5,5,20,20)

.05 2 .05 2 .05 2 Av. 2
XIO XlO XlO XlO

Bar-X
2 .054 12.5 .045 17.7 .047 6.3 12.2

Bar2-x2 .048 9.2 .053 10.7 .052 5.2 8.4

Bar-Boot .027 15.0 .032 10.5 .039 13.3 12.9

Jack-F .034 17.7 .054 12.9 .086 42.0 24.2

Jack-Boot .044 ll.5 .053 14.5 .053 15.9 14.0

Levl:med-F .003 82.7 .037 17.2 .022 25.6 41.8

Laplace

Bar--x
2 .184 620.6 .261 1537.5 .266 1441.9 1200.0

Bar2--x
2 .061 30.7 .047 21. 3 .058 4.9 19.0

Bar-Boot .068 33.7 .048 18.3 .093 70.7 40.9

Jack-F .064 21. 2 .082 50.6 .123 160.3 77.4

Jack-Boot .062 12.8 .048 13.1 .068 18.9 14.9

Lev1:med--F .007 67.4 .033 13.5 .031 11. 6 30.8

Extreme Value

Bar-x
2 .122 158.3 .188 623.6 .170 440.6 407.5

Bar2-x
2 .058 21. 0 .049 20.4 .056 12.4 17.9

Bar-Boot .042 24.1 .050 16.2 .073 31.5 23.9

Jack-F .058 4.2 .074 31.6 .118 121.4 52.4

Jack-Boot .067 19.2 .061 14.2 .058 20.8 18.1

LevI :med-F .003 77.5 .032 14.1 .022 28.2 39.9

Exponential

Bar-x
2 .303 2090.6 .407 5501. 8 .387 4750.6 4114.3

Bar2-x
2 .109 133.0 .100 74.9 .062 18.0 75.3

Bar-Boot .130 261.0 .102 137.4 .127 179.9 192.8

Jack-F .083 35.2 .133 243.2 .163 395.4 224.6

Jack-Boot .082 45.1 .088 61. 7 .073 28.2 45.0

Levl:med-F .015 52.5 .042 9.4 .036 11. 0 24.3



Table 5. Estimated Levels and 2 Results for Bootstrap Tests with Different Resample SetsX

Normal Extreme Value Exponential

(n1,n2 ,n3 ,n4 ) = (5,5,5,5) (l0, 10, 10, 10) (5,5,5,5) (l0, 10, 10, 10) (5,5,5,5) (l0, 10, 10, 10)

.05 2 .05 2 .05 2 .05 2 .05 2 .05 2
xlO xlO xlO xlO xlO XlO

Bar-Boot
Mean .027 15.0 .032 10.5 .042 24.1 .050 16.2 .130 261. 0 .102 137.4

20% Trim .017 38.4 .024 21.2 .023 23.8 .039 12.5 .076 35.2 .057 12.7

Median .007 60.4 .015 35.6 .015 43.1 .024 26.0 .044 7.8 .042 10.5

Jack-Boot
Mean .044 U.5 .053 14.5 .067 19.2 .061 14.2 .082 45.1 .088 61. 7

20% Trim .039 15.4 .056 5.2 .064 18.3 .055 11. 7 .072 20.3 .072 24.9

Median .030 17.6 .054 4.1 .058 21. 7 .050 14.0 .063 15.7 .072 24.7

Note: Mean, 20% trim, and median refer to resampling from (4.1 ) with X. = X. , X. = ith
1 1 l.

sample 20% trimmed mean, and X. = ith sample median, respectively.
1



Table 6. Observed and Adjusted Power of 4-sample a = .05 Tests under
. 2 2 2 2) _ (1 r) 4 8) . d 1Ha : (~1'~2'~3'~4 - , ,~" . Power 1S Average over Samp e

Sizes (n
l

,n
2

,n3 ,n
4

) = (5,5,5,5), (10,10,10,10), (5,5,20,20).

Normal Laplace Extreme Value Exponential Average

Bar-X2 .56 ( .57) .64 (.22) .60 (.32) .69 (.13) .62 (.31)

Bar2-x2 .41 ( .41) .24 ( .23) .30 ( .29) .28 (.18) . :31 ( .28)

Bar-Boot .44 ( .50) .37 ( .31) .39 ( .38) .39 (.21) .40 (.35)

Jack-F .42 (.40) .33 (.23) .36 (.28) .31 (.18) .36 (.27)

Jack-Boot .36 (.35) .24 (.22) .29 (.26) .23 (.16) .28 (.25 )

Levl:med-F .32 (.48) .18 (.26) 2? (.36) .16 (.19) .32 (.32). ~

Note: Entries have standard deviation bounded by .01. Adjusted entries in parentheses
are less ?ccurate.



Table 7. Data from a study on toxicity of calcium edetate (Brownie et a1. 1986)

- 2Group n. Average daily food intake (g) X. s.
1 1 1

1 6 17.98 18.25 21.08 18.50 18.26 19.95 19.0 1.53

2 7 16.42 16.45 16.58 18.08 19.14 17.40 18.53 17.5 1.20

3 7 14.27 17.15 13.67 17.72 11.57 18.33 14.42 15.3 6.14

4 8 11.48 9.45 8.17 12.68 10.25 5.08 17.50 16.33 11.4 16.95

5 12 7.78 5.88 6.55 4.88 4.95 8.77 5.17 4.10

9.25 1.92 3.03 15.65 6.5 13.09


