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ABSTRACT

Various estimators of slope,· intercept, and mean response in

the simple linear regression problem are compared in terms of

unbiasedness, efficiency, breakdown, and mean squared error.

Theil's estimator of slope and two intercept estimators based on

Theil's estimator are recommended for inclusion in nonparametrics

courses as robust, efficient, and easy-to-calculate alternatives to

least-squares.

KEY WORDS: Linear regression; Robust estimation; Point

estimation; Breakdown; Theil estimator.
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1. INTRODUCTION

Few teachers of an introductory statistics course would think

of omitting the topic of simple linear regression. Yet that topic is

either omitted entirely or covered incompletely in most popular

nonparametric statistics texts. Many such books include a

distribution-free test or confidence interval for the slope of the

regression line, but omit any discussion of the intercept. Those

books that do discuss the intercept· offer a variety of estimators

without providing any basis for choosing among them. The problem

of estimating the mean response at a given x is also neglected in

these texts.

In this article, I review various point estimators for the

slope, intercept, and mean response in the simple linear regression

problem. None of the estimators are new, but many are not well

known. I illustrate the calculation of the estimators with an

example. After considering unbiasedness, efficiency, breakdown, and

mean squared error (MSE) of these estimators, I make the following

recommendations: Theil's estimator of slope is robust, easy to

compute, and competitive in terms of MSE with alternative slope

estimators. For symmetric error distributions, the median of

pairwise averages of residuals based on Theil's estimator provides

an attractive estimator of the intercept. If the errors are

asymmetric or heavily contaminated with outliers, the median of

residuals based on Theil's estimator is preferable.
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2. THE ESTIMATORS

I assume the model Yi = ex + {3xi + ei , i = 1,2, ... ,n, where ex

and {3 are unknown parameters, xl <!E X2 <!E <!E xn are known

constants (not all equal), and the ~i's are independent and

identically distributed continuous random variables with mean zero.

2.1 Slope Estimators

The estimators of {3 considered in this paper can all be viewed

as functions of the N sample slopes

If the xi's are all distinct, N = (~).

The least-squares estimator of {3, {3LS , is a weighted average

of the Sij'S. Specifically,

where Wij = (Xj - Xi)2

Randles and Wolfe (1979, Problem 3.1.6) suggest as an

estimator of {3 the UDweighted average of the Sij'S,

A

{JA = L S' '/N.L.' lJ
1 J

The estimator of {3 mentioned most frequently in textbooks on

nonparametric statistics is the Theil (1950) estimator, PM , the

median of the Sij'S.

Sievers (1978) and Scholz (1978) generalize the Theil estimator

by assigning a weight of Wij to each Sij (wij = 0 for xi = Xj).

Their estimator of {3 is the median of the probability distribution

obtained by assigning probability Wijl .LL.. Wij to Sij. The Theil
1 J

estimator corresponds to Wij = 1 for all i L. j, xi = X} Other
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weights considered by Sievers and Scholz are Wij = j-i and Wij =
Xj - xi (recommended by Sievers). The estimators corresponding to

A A

these two sets of weights will be referred to as PWI and PW2,

respectively.

These estimators of P are summarized in Table 1.

(Insert Table 1 here).

2.2 Intercept Estimators

The estimators of ex considered in this paper can be divided

into two groups, those that are functions of the N sample

intercepts

and those based on residuals associated with a particular slope

estimate.

The least-squares estimator of ex, <XLS , is a weighted average

of the Ai/S. SpeCifically,

A

exLS

Randles and Wolfe (1979, Problem 3.1.6) suggest as an

estimator of ex the unweighted average of the Aij'S ,

exA = .~.Aij/N.
1 J

The median of the Ai/S, <XM , provides an estimator of ex

analogous to Theil's estimator of p. Maritz (1979) shows that the

test statistic corresponding to this estimator is not

distribution-free. He considers instead tests and estimators based

on the median of a subset of the Aij's. (Maritz considers only the

case of distinct x's.) Since the emphasis here is on point
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estimation, I use the median of all the Aij's.

These estimators of ex, all functions of the Ai/S, are

summarized in Table 1.

Another class of intercept estimators is obtained by taking the

median or median of pairwise averages of Yi - pXi , i = 1,2,... ,n,

where P is some estimator of p. Bhattacharyya (1968) considers the

median of pairwise averages of the (Yi - PXi)'S, where P is either

...
the Theil estimator PM or the weighted median estimator f3w1 with

weights j-i. (In Bhattacharyya's paper, xi = i for i = 1,2,... ,n.)

Hettmansperger (1984) considers both the median and median of

pairwise averages of the (Yi - PW2 Xi) 's. Members of this class of

estimators are listed and named in Table 2.

(Insert Table 2 here)

Finally, Conover (l980, p. 267) proposes the estimator

...
exC = Y.50 - PMx.50 ,

where Y.50 and x.50 are the sample medians of the V's and x's,

respectively. Note the analogy with the least-squares estimator,

which can be written as cXLS = Y - PLSX, where Y and x are the

sample means of the V's and x's, respectively.

2.3 Estimators of Mean Response

The mean response at a given x value, E(Y) = ex + P x, is often

a more interesting parameter than the intercept ex. (Of course, if

x =0, then E(Y) =ex.) The estimators of E(Y) considered here are

of the form ~ + P x, where each ~ in Tables 1 and 2 is associated

with the P given in the same row of the table, and ~C is associated

A

with PM •
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There are, of course, many other estimators of slope and

intercept which could have been considered here. In fact, Simon

(1982) compares more than forty estimators of slope, all functions

of the Sij's. I have tried to select estimators that are simple to

understand and easy to compute.

3. UNBIASEDNESS AND SYMMETRY

In this section, I consider unbiasedness and symmetry

properties possessed by the estimators. Since E(Sij) = {:J, it follows

A A

that {:JLS and {:JA are unbiased estimators of {:J. Sen (1968, sec. 5)

A

shows that the distribution of {:JM is symmetric about {:J, and

A A

Theorem 5 of Sievers (1978) implies that {:JW1 and (:JW2 are

asymptotically unbiased, under certain conditions on the x's.

At the beginning of Section 2, I assumed that the ei's have

mean zero. Then E(Aij) = IX , which implies that OeLS and OeA are

unbiased estimators of IX. The alternative assumption that the ei's

have median zero leads to a reparameterization more appropriate

for most of the other intercept estimators. The simulation study of

Dietz (1986) suggests that under this alternative parameterization,

OeM, 0e1,M, 0e1,W1, 0e1,W2, and OeC are median unbiased estimators of IX

(that is, each has a distribution with median IX). The simulation

study also suggests that 0e2,M, 0e2,W1, and 0e2,W2 are estimators

of IX plus the pseudomedian of ei (Hollander and Wolfe 1973, p. 458).

For symmetric error distributions, these various parameterizations

coincide and all of the intercept estimators estimate the same

parameter.

If the distribution of the ei's is symmetric about zero,

every estimator of IX or {:J in Tables 1 and 2 has a distribution
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which is symmetric about the value of the corresponding parameter.

Symmetry of ; and P implies symmetry of ; + P x about 0( + fJ X.

The distribution of ;C is symmetric about 0( if fJ = 0; however, it

does not seem possible to demonstrate any unbiasedness property

A

for O(C for general fJ.

4. EFFICIENCY

The asymptotic relative efficiency of one estimator with

respect to another is defined as the ratio of the asymptotic

variances of the two estimators. Let 0'2 = Var(ei) and let f be the

density function of the ei's. Then eS = 40'2f2(0) and

ew = 120'2[U2 (x)dx]2 are the well-known efficiencies of the sample

median and the sample median of pairwise averages, respectively,

with respect to the sample mean.

Sen (1968) shows that, under suitable conditions on the x's,

A

the efficiency of the Theil estimator fJM with respect to fJLS is

p2~W, where p2 = lim p~ , and Pn is the product moment correlation
n ~ GO

coefficient between (xl,x2, ... ,xn) and (1,2, ... ,n). For equally

spaced x's, p equals one, and the efficiency of 1JM achieves its

maximum value of ew.

Scholz (1978) shows that weighted median estimators of fJ (e.g.,

fJW1, PW2, and PM) cannot have efficiency exceeding ew relative to

fJLS' The estimator PW2 achieves the optimal efficiency of eW; the

efficiency of PW1 equals that of PM (Sievers 1978). (Note that both

Sievers (1978, Example 3) and Lehmann (1975, p. 313) erroneously

attribute to Bhattacharyya (1968) the claim that weights Wij = j-i

and Wij = 1 lead to the same estimator of fJ. The resulting

estimators, fJWl
A

and fJM, are equivalent in terms of asymptotic
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efficiency, but are not identical. In fact, Bhattacharyya proposes

A A

f3Wl and 13M as alternative estimators.)

Direct computation shows that for distinct x's, Var (PA) and

Var (~A) increase without bound as the smallest distance between

A A

any two x values decreases to zero. As a consequence, f3A and OI.A

can have very low efficiency relative to other estimators. (In

fairness to Randles and Wolfe (1979), they do not recommend these

estimators; they arise merely as answers to a textbook exercise.)

Incomplete information is available concerning the asymptotic

relative efficiencies of the intercept estimators. Assume for the

remainder of this section that f is symmetric, so that the intercept

parameter is well-defined.

Hettmansperger (1984, p. 250) shows that the efficiency of

a2,W2 relative to aLS is eW, the efficiency of the median of pairwise

averages. He also gives results (Hettmansperger 1984, p. 251) that

imply that the efficiency of a1,W2 relative to aLS is given by

(1)

If the x's are2 n 2
where IL = lim x and uv = lim r (x' - x) In .

r "". 1 1n ~ m n ~ m 1=

centered so that jJ. =0, then expression (1) reduces to es, the

efficiency of the sample median. On the other hand, for large

jJ.2/u~, expression (1) is dominated by ew. Note that in this

latter case, we are less likely to be interested in making

inferences about 01., since a very large value of jJ. ~u ~ implies

that zero is outside the range of the x values.

Maritz (1979) gives an efficiency result for an estimator
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related to oeM, but based on a certain subset of the Aij's. For

equally spaced x values and normal errors, the efficiency of his

estimator with respect to ~LS is 211T, the value of es for normal f.

Note that two nonparametric estimators {Ji and {Jj (or ~i

and ~j) can be compared using

ARE({Ji, (Jj) = ARE ({Ji, {JLS)/ARE({Jj, (JLS),

where ARE ({Ji, (Jj) is the asymptotic relative efficiency of {Ji with

respect to fJj (Randles and Wolfe 1979, Problem 5.2.3).

5. BREAKDOWN

Donoho and Huber (1983) define the following notion of the

breakdown point of an estimator. Suppose a fixed sample of size n

is corrupted by replacing an arbitrary subset of size m from the

sample by arbitrary values. Then the corrupted sample contains a

fraction l: = min of contaminated values. The breakdown point l:*

of an estimator is the smallest value of l: for which the estimator,

when applied to the corrupted sample, can take values arbitrarily

far from the value of the estimator for the uncorrupted sample.

Donoho and Huber discuss two types of corruption in the simple

linear regression problem: corruption in only the V's and

corruption in both the x's and V's.

A A

For either type of corruption, eXLS, fJLS, eXA' and fJA have

breakdown point lin; that is, a single bad observation can cause

these estimators to behave arbitrarily badly.

A

The Theil estimator fJM breaks down if and only if at least

half of the Sij are contaminated. The resulting breakdown point

equals that of the median of pairwise averages, that is,

approximately 1 - 2-1/2 = .293 for large n (Donoho and Huber
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1983). The same reasoning implies that oeM has this same

breakdown point.

A

The estimators of oe that depend on PM, namely eXI,M' eX2,M' and

oec, also have breakdown point t* % .293; because of PM' (However,

if x.50 = 0, then eXC has breakdown point .5. This would be the

case if we "median-center" the x values.)

The weighted median estimator /1W1 with weights j-i breaks

down if and only if the sum of weights corresponding to

contaminated Sij's exceeds half the sum of all the weights. This

leads to a breakdown point of approximately 1 - 2-1/3 = .206 for

A

large n (Scholz 1978). The estimators of oe that depend on PW1,

namely eXI,WI and Oc2,WI, share the breakdown point of PWI.

The breakdown point of /1W2, the weighted median estimator

with weights Xj - Xi, depends on the type of corruption. For

contamination in the x's as well as the Y's, the breakdown point is

lin. For contamination in the Y's only, the breakdown point

depends on the placement of the x's. The breakdown point can be

as low as lin, if one bad Y value corresponds to a very influential

X value. Specifically, if the sum of weights associated with one

observation exceeds half the sum of all the weights, the associated

Y value has an arbitrarily large effect on PW2' The estimators of oe

that depend on /1W2' namely eXl,W2 and Oc2,W2, share the breakdown

point of /1W2 in a given situation.

The breakdown point of an estimator oe + px of a mean

response is the smaller of the breakdown points of ~ and /1.
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6. MEAN SQUARED ERROR

In this section, I summarize the main conclusions of a

simulation study in which I estimated and compared the mean

squared errors (MSE's) of the various slope and intercept

estimators (Dietz 1986). In that study, five hundred samples were

generated for each combination of n = 20 and 40, three x designs,

and nine error distributions. The value of each estimator of <X and

(3 defined in Section 2 was computed for each sample. For n = 20,

and the eight symmetric error distributions, the value of each

estimator of E(Y) was also computed for each of two x values, one

involving interpolation, the other extrapolation. (Note that E(Y) is

not the natural parameter to estimate for an asymmetric error

distribution.) The 500 values of an estimator thus obtained were

used to estimate the MSE of that estimator for that n, x design,

and error distribution.

The x designs consisted of the expected order statistics from

samples of size n from the uniform, normal, and (approximately) the

double exponential distributions. Each set of x's was standardized

n n 2
so that r xi =0 and r x· = 1. The resulting sets of x's vary in

i=l i=l 1

the extent to which information is concentrated around x = O.

Nine error distributions were considered -- the standard normal,

six contaminated normal distributions, the heavy-tailed t

distribution with three degrees of freedom, and the asymmetric

lognormal distribution. See Dietz (1986) for details concerning

computation and the generation of the random variates.

For estimating slope, the main findings of the simulation study

were:
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A

1. The MSE of {lA is very large, especially for the double

exponential x design and heavily contaminated error distributions.

2. The least-squares estimator, {lLS , has smaller MSE than

any other estimator for normal errors; However, for the other

error distributions, the MSE of {lLS is exceeded only by that of {lA.

A

3. The estimator {lW2 performs well until the errors are

heavily contaminated at which point {lM is better.

A A

is usually between those of {lM and {lW2.

A

The MSE of {lWI

For estimating mean response (the intercept is a special case),

the main results for symmetric error distributions were:

A

1. The MSE of aA + {lA x is very large compared to those of

the other estimators.

A

2. The estimator aM + {lM x is also non-competitive in terms

of MSE; its MSE is usually one of the two or three largest.

A

3. The least-squares estimator, aLS + {lLS x, has smaller MSE

than any other estimator for normal errors. For other error

distributions, its MSE is usually exceeded only by that of

4. For most situations considered, the estimators based on

the ;1'S (al,M, a1,W1, a1,W2) do not differ among themselves in

MSE; the same is true of the estimators based on the ;2'S (cX2,M,

a2,WI, a2,W2)' The cX2 estimators have smaller MSE than any other

estimators, except for normal errors, where the least-squares

estimator is preferable, and the most heavily contaminated normal

error distribution, where the al estimators and ac + PM x are

preferable.
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5. When estimation of the mean response requires

A

extrapolation, the choice of P estimator can be more important than

the choice between the 0:1 and 0:2 groups of estimators. That

is, it makes little difference whether' the median or median of

pairwise averages is used to estimate E(Y); the choice of p used to

form the residuals is more important. The estimators based on PW2

perform well until the errors are heavily contaminated at which

A

point estimators based on PM are better.

See Dietz (1986) for simulation results for the asymmetric

lognormal error distribution.

7. EXAMPLE

McEntee and Mair (1978) studied the relationship between

cerebrospinal fluid concentration of certain brain metabolites and

the extent of memory impairment in nine patients suffering from

Korsakoff's syndrome. Memory function was measured by IQ-MQ,

where IQ is the full-scale intelligence quotient derived from the

Wechsler Adult Intelligence Scale and MQ is the memory quotient

derived from the Wechsler Memory Scale. The larger IQ-MQ, the

more severe the memory impairment. McEntee and Mair computed

Pearson correlation coefficients between IQ-MQ and the

concentration of each of four brain metabolites. They also fit the

least-squares line for IQ-MQ and MHPG, the one metabolite for

which a significant correlation with IQ-MQ was found.

Table 3 shows the values of IQ and MQ and the concentration

of the brain metabolite homovanillic acid (HVA) for each of the nine

patients. Figure 1 shows a scatterplot of HVA versus IQ-MQ. Table

4 shows the ordered values of the sample intercepts Aij and the
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ordered values of the sample slopes Sij for these two variables.

Also shown are the weights j-i and Xj-Xi corresponding to each Sij.

The weighted median estimates of {3 are given by appropriate

averages of Sij's: PW1 = (-.059 + .067)/2 and PW2 = (.154 + .185)/2.

The values of the various estimates of slope and intercept are

shown in Table 5.

(Insert Tables 3, 4, 5 and Figure 1 here.)

Certain estimated lines from Section 2.3 are displayed in

A

Figure 1. Because each ex2 estimate is equal to or nearly equal to

the corresponding ~1 estimate, and the value of ~C is very similar

to exl,M = ~2,M' certain lines are omitted from Figure 1.

The outlying observation for Patient 9 has a large effect on

A A

the lines y = exLS + {3LS x and y = ex1,W2 + {3W2 x. Note that the

sum of the weights Xj -Xi associated with Patient 9 is 361, more

than half the sum of all the weights (654). Thus the Y value for

A

Patient 9 has an arbitrarily large effect on {3W2, and therefore on

ex1,W2' (See Section 5 on breakdown.) Note also that the value of exM

seems unreasonably large.

Although the lines based on the three exl estimators look fairly

different from each other in Figure 1, near the center of the data

they yield very similar estimates of E(Y). In fact, at x = 31, the

A A A

estimates of E(Y) corresponding to exl,M, exl,Wb and exl,W2 are all

equal to 27.00.

8. DISCUSSION AND RECOMMENDATIONS

Given all of this information, what robust alternatives to the

least-squares estimators should we teach in our introductory

nonparametrics courses?
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A

For estimating slope, we can eliminate {JA from consideration,

leaving the weighted median estimators PM, PW1, and PW2' In that

order, the asymptotic relative efficiencies of these estimators with

respect to PLS are p2ew, p2ew, and ew; their breakdown points are,

A

approximately, .293, .206, and as low as lin. Thus, {JW2 can have

higher efficiency, but is less robust, than {JM and {JW1.

Although sometimes less efficient, the Theil estimator is

considerably easier to compute than {JW1
A

or {JW2. An exact

confidence interval related to PM can be found easily using tables

for Kendall's tau (Hollander and Wolfe 1973). Confidence intervals

A A

corresponding to {JW1 or {JW2 are more difficult to compute and are

based on large sample approximations (Sievers 1978). Thus, I

recommend PM as a robust, easy-to-compute slope estimator whose

MSE is often smaller and never much larger than that of competing

estimators.

Of the estimators of mean response, we can eliminate those

based on aA and aM from consideration, leaving those based on the

If the mean response to be estimated is well within the range

of the x values, the estimators within the ~1 group or within the a2

group are very similar in MSE. Then there is no motivation for

choosing the estimators based on the computationally difficult PWI or

PW2 over those based on PM' The MSE of ~2,M + PM x is smaller than

that of al,M + {JM x or
A

(XC + {JM x for all symmetric error

distributions considered in the simulation study except the most

heavily contaminated normal distribution. Thus, for symmetric errors

with light or moderate contamination, I recommend the estimator
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based on <X2,M, the median of pairwise averages of residuals based

on PM. For heavily contaminated errors, estimators based on ~l,M or

<xc are preferable.

For asymmetric error distributions, most of the estimators

considered here do not estimate the mean response, but rather the

median or pseudomedian of the response. The pseudomedian,

A

estimated by <X2,M, is a parameter of dubious interest; thus in this

situation, I recommend the estimators based on ~l,M or ~c.

The estimator ~c is robust and easy to compute; however, it

has unknown bias and efficiency properties.

In conclusion, I will suggest the following in my nonparametrics

course from now on: To estimate slope in the linear regression

A

problem, use PM' The choice of an intercept estimator depends on

the assumptions you are willing to make about the error

distribution. If you are willing to assume symmetry, use <X2,M; if not,

or if the errors are very heavily contaminated, ~l,M is a better

choice.
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Table 1. Estimators of po and ex Based

on Sample Slopes and Intercepts

Description P ~ex

~

~Least-squares PLS exLS
~

~Unweighted average PA exA
~

~Median PM exM
~

Weighted median, weights j-i Pwl
~

Weighted median, weights Xj-Xi PW2
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A

Table 2. Estimators of ex Based on Yi-{Jxi

Median of
A

{J Used Median Pairwise Averages

A

0:1 M 0:2,M{JM ,
A

O:l,Wl 0:2,Wl{JWl
A

0:1 W2 0:2,W2fJw2 ,
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Table 3. HVA Concentrations (Nanograms per

Milliliter), Full-Scale Intelligence Quotients

(1Q), and Memory Quotients (MQ) for Nine

Patients with Korsakoff's Syndrome

Patient* HVA 1Q MQ

1 21 89 60

2 23 90 59

3 25 122 102

4 25 87 64

5 26 89 61

6 31 106 79

7 40 104 80

8 48 106 80

9 75 127 88

*Patients have been renumbered according to increasing value of HVA.

Source: McEntee and Mair (1978).
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Table 4. Ordered Sample Intercepts Aij and

Ordered Sample Slopes Sij with Corresponding

Weights for HVA and IQ-MQ

Ordered Aij Ordered Sij j-i Xj-Xi

-180.000 -5.500 1 2
-102.000 -4.000 2 2

-9.167 -2.250 2 4
2.889* -1.500 3 4
6.333 -1. 000 3 3
6.857* -.500 4 8
8.000 -.412 5 17

10.500* -.333 1 9
13.333 -.286 2 14
13.478 -.263 6 19
14.000 -.200 5 10
15.000* -.200 4 5
18.545* -.200 6 25
19.739 -.200 1 5
21.333 -.111 7 27
22.163* -.091 3 22
25.111* -.059 2 17
27.462* .067 3 15
28.824 .130 4 23
30.364 .154* 7 52
31.333 .185* 8 54
33.200 .224* 4 49
33.200 .250 1 8
33.200 .261 5 23
34.526 .267 4 15
35.429 .273* 3 44
35.600 .320* 5 50
37.333 .380* 6 50
40.471 .429* 2 35
42.500 .481* 1 27
54.000 .667 2 6
60.500 1.000 1 2
76.250 1.167 3 6

123.000 5.000 1 1
157.500 8.000 2 1

Sum 119 654
Mean 23.452 .061
*Aij'S and Sij'S associated with Patient 9.
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Table 5. Estimates of Slope and Intercept

for HVA and IQ-MQ

f1LS = .1964 <XLS = 20.592 <Xl,M = 24.933

PA = .0614 <XA = 23.452 <Xl, WI = 26.878
..
PM = .0667 <XM = 27.462 <Xl, W2 = 21. 745
..
fJw1 = .0039 <XC = 25.267 <X2 M = 24.933,
..
PW2 = .1695 <X2,W1 = 26.878

<X2,W2 = 21. 652
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Figure title

Figure 1. Scatterplot of HVA versus IQ~MQ with-Fitted Regression Lines. Notice

the outlying point for Patient 9.
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