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Abstract

A short description is first given of the fascinating use of Hermitian
curves and normal rational curves by Goppa in the construction of linear error
correcting codes and estimation of their transmission rate (kin) and error
correcting power (din) by invoking Riemann-Roch theorem and the subsequent
discovery by Tsfasman, Vladut and Zink of a sequence of I inear codes in q
symbols, whi ch performs better than those predicted by the Gi lbert--Varshamov
bound for q ~ 49.

Next, several new codes which have been constructed by embedding the

non-degenerate Hermitian surface 3 3 3 3
0 of PG (3,4) , in a PG(9,4)Xo + xl + x2

+ x3
=

via monomials and weight-distributions of these codes are presented.

Using the geometry of intersections of a non-degenerate Hermitian surface

in PG(3,s2), by secant and tangent hyperplanes, a family of two-weight projective
linear codes have been derived. For s=2, it is shown that the strongly regular

graph of this code gives rise to the Hadamard difference sets v = 28 , k = 27_23 ,
63 8 73 63 ').. = 2 -2 and v = 2 , k = 2 + 2 , ).. = 2 + 2. In fact, the author has now

shown that this construction can be extended to derive the Hadamard difference
sets v = 22N+2, k = 22N+I_ 2N, ).. = 22N_ 2N, v = 22N+2, k = 22N+I+ 2N,

).. = 22N+ 2N. This will be reported in another paper.

*Some of these results were presented at the 3~me Colloque International Thfiorie
des Graphes et Combinatoire, Marseille-Luminy, 23-28 Juin 1986 and at the
International Conference on Information Processing and Management of Uncertainty
in Knowledge-based Systems, Paris, June 30-July 4, 1986.
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Introduction.

A code C is a subset of an n-dimensional vector space V (q) over a finite
n

field GF(q). The Hamming weight of a code vector w(g), E, = (a1 ,··· ,an)' a i in

GF(q), is the number of non-zero symbols in ,g. The Hamming distance d
H

(,g,11)

between two codewords ,g and 11 is the number of positions i, 1 ~ i ~ n, in which

they differ. Let d be the minimum of the distances between pairs of codewords of

e, d min d(g,11) and let lei = M = number of codewords in e. Then the code e
a,bee

has the parameters (n,M,d). n is called the length of a codeword

subspace of dimension k, of V (q), e is a linear (n,k,d) code, M
n

If C is a

kq. For a

linear code d is the same as the minimum of the weights of non-zero codewords. A

code e with minimum distance d can correct up to [(d-1)/2] errors. Let G
k ,n

(gij) be a basis of the linear code e(n,k,d) . Then G is called a generator

matrix of the code. Let H (h .. ) be a basis of the null space e the dualr,n IJ

linear code
1

H GT Then is called ae of e, o. II parity check matrix of e.

For a given positive integer q, q-ary symmetric channel is a discrete

memoryless channel with input and output alphabet {O,l, ... ,q-1} and channel

probabilities p(ili) 1-13" pUli) ~ pI(q-1), i ~ j. The capacity e of such a

channel is e = log q + (1-13) log(l-p) + 13 log 13 - 13 log(q-1).

Given a symmetric discrete memoryless channel with capacity e > 0 and a

positive number R < e, there exists a sequence of q-ary linear codes (n
i

,k
i

,d
i

),

k.
i = 1,2, ... where n1 < 02 < ... , R 5 n~ < C with the maximum probability of error

1

II. (of the i th code) tending to zero.
1

(See, for instance, Ash (1965), pp.

110--127) . Ash (1965, p. 130) has argued that if we could synthesize binary

linear codes meeting the Gilbert-Varshamov bound, then such codes could be used
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to maintain any transmission rate up to 1 - H(2 {3, 1-2{3) (which is close to the

capaci ty of a binary symmetric channel for f3 < l), with an arbitrary small

probability of error. Ash's analysis and discussion in the context of binary

I inear codes can be extended with sui table modification to q-ary I inear codes.

This explains why coding theorists are so keen on constructing algebraically,

sequences of q-ary linear codes which perform better than the Gilbert-Varshamov

bound. However, it is known that there does not exist an infinite sequence of

m
primitive BCH codes of length novel' GF(q) (n = q -1) with 5 and R tending to

d
non-zero limits (see, for instance, MacWilliams and Sloane. 1977) (5 = -).

n

Using the idea of concatenated codes, Delsarte and Piret (1982), have given

an algebraic construction of codes wi th feasible encoding/decoding algorithm,

which simul taneous ly attain channel capaci ty and have probabi 1i ty of erroneous

decoding tending to zero. This is, however, possible only because the

requirement of a least d has been dropped. In Gappa's approach based on

algebraic geometry and the subsequent work by Tsfasman, Vladut and Zink (1982),

this assumption is not made.

Goppa codes from algebraic curves

Let X be a smooth (non-singular) irreducible projective curve of genus g in

the N-dimensional projective space over GF(q) (the algebraic closure of GF(q»

and let Q. PI' ... 'P
n

be n+l rational points (with coordinates in GF(q» on X.

Let t be an integer such that 2g-2 < t < n. The linear space L(tQ) with respect

to the divisor tQ is the set of rational functions f such that the order f in Q ~

i s ~ -t. The codewords of the linear code C(n, k, d) over GF (q) are then defined

•
by (f(P

1
), ... , f(P ». f in L(tQ). From Riemann-Roch theorem. it follows that

n

k = t - g + 1 and d ~ n-t. Hence R = ~ > 1 - ~ = gin and 0 = dn - n (See, for

instance, Gappa (1984), Vladut, Katsman and Tsfasman (1984.)
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Let the functions f o = 1. f 2 .... , f k- 1 be a basis of the space L(tQ) and let

gij = fi(P j ), i = 0.1 .... k-1. j = 1..... n. Then G = (gij) is a generator

matrix of the linear code C (n,k,d). Let s = t-2g+1. Then one can show that

every set of s columns of G has rank k-g = (t-g+1)-g = s. Thus the dual C' of

C. has minimum distance C' ~ s+1 and has dimension k' = n-k. It follows then

R'
d'- -- = 1-~-5'. The dual codes {C') can be shown to be the same
n

as the codes {C*} constructed by Goppa (1981, 1982). now known as generalized

Goppa codes. The code vectors were defined as vectors of residues of

differentials in the linear space n(z P.-tQ) which is isomorphic to
I

L(K + Z P.-tQ), where K is a canonical divisor of degree 2g-2 and dimension g.
I

The linear codes {C} constructed above are natural generalizations of

Reed-Solomon codes which are maximum distance separable (mds) codes or

equivalently orthogonal arrays of index unity (see, Bush (1952). Chakravarti

(1963), Singleton (1964) and MacWilliams and Sloane (1977), ch. 11).

Higher the ratio of the number of rational points on the curve X to its

genus, better is the performance of the code. Vladut and Drinfel'd (1983) have

shown that the limit of this ratio A(q) as the genus tends to infinity. does not

d J- d f 2£ h f' 1 . f F() . h ()excee q-1 an or q = p t ere are amI Ies 0 curves over G q WIt A q =

Jq-1 (Ihara (1982), Tsfasman, Vladut and Zink (1982». For q 2P then,

The asymptotic form of the5.
- -1

(Jq-1)lim sup R = ex
q

(5) ~ 1
fl-t/lO

Gilbert-Varshamov bound states that there exists a sequence of codes such that

lim sup R = ex (5) > 1 - 5 log (q-1) + 5 log 5 + (1-5)log (1-5).
q"" q q q

n....;oo

For 51 < 5 < 52' where 51 and 52 are the roots of the equation

5 log (q-1) - 5 log 5 - (1-5)log (1-5) - 5 = (Jq-1)-1),
q q q
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the first lower bound lies above the Gilbert-Varshamov bound. This equation has

roots for q ~ 49 (p ~ 7, e = 1) (Tsfasman, Vladut and Zink (1982), Tsfasman

1982) .

If the sequence of linear codes {C} exceeds the Gilbert-Varshamov bound, the

corresponding sequence of dual codes {C'} also does the same.

Gappa (1982) has defined a class of codes called normal codes determined

from a pair of divisors D = Z P. and G = Z m
QQ, where P. are rational points on a

1 1

normal curve F and the carriers of the two divisors are disjoint. If Q belongs

to some extensions field of GF(q), then both m
QQ and mQo Q lie on the divisor G,

where oQ is the Frobenius transform of Q. A normal (D,G) code has the parameters

In - (q+1) I ~ 2g.)q, r = deg G -g+l. d ~ deg G -- 2g+2. The length n of the code

does not exceed the number of rational points on F. for which the well known

Hasse-Weil estimate is In - (q+l) I ~ 2gjq, where g is the genus of F. In e·
particular, of special interest are curves on which the upperbound n

is attained.

q+1 + 2gJQ

For every q 2h
p p a prime, the

jq+1
curve xa = a over

PG(2,q), called a Hermitian curve has genus g = (q .jq)/2 and n number of

rational points qjq+1. Hence it satisfies the Hasse-Weil bound. The

geometries of Hermitian curves in projective planes and Hermitian surfaces in

higher dimensional projective spaces have been extensively studied by Bose (1963,

1971), Bose and Chakravarti (1966), Chakravarti (1970, 1971) and Segre (1965,

1967) .

Each one of these codes and their

Gappa (1981, 1982, 1984) has used the Hermi tian curves

over PG(2,s2) to construct new linear codes.

s+l s+l s+lx +x +x
2a 1

= a

duals are equivalent to certain orthogonal arrays which are extremely useful as
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designs with a wide range of applications and also as building blocks for other

designs such as resolvable and affine resolvable balanced incomplete block

designs, and balanced arrays which can be also used as equidistant codes with

maximum distance, balanced codes and uniformly packed codes.

If h is any element of GF(s2), where s is a prime or a power of a prime,

then fi = hS is defined to be conjugate to hand h is conjugate to h since

2
hS = h. A square matrix H = (h, ,), h., = h .. , i, j = 0,1, ... ,N is called a

IJ lJ Jl

Hermitian matrix. The set of all points in PG (N, s2) whose row vectors AT

(x
O

,x1 ' ... ,xN) satisfy the equation AT II x(s) = 0, are said to form a Hermitian

variety VN-
1

if II is Hermitian; ~(s) is the column vector whose transpose is

s s(xo ' ... , xN). The variety VN- 1 is said to be non-degenerate if H has rank N+1

s+land its equation can be taken in the canonical form x
o

+ ... + o. IfH

has rank r+1, then H
(s)

~ can be reduced by a non-singular linear

transformation, to the canonical form y y +
o 0

... + The number of points in

d t H 't' . t VI'S (sN+1 - (_1)N+1)(sN - (_1)N)/(s2_1)a non- egenera e erml Ian varle y N-1

and the number of points with exactly r non-zero coordinates in VN- 1 is

(Bose and Chakravarti, 1966). If N = 2t+1

or 2t+2, then a non-degenerate Hermitian variety VN- 1 contains flat spaces of

dimension t and no higher. The number of u-flats, 0 ~ u ~ [(N-1)/2] were derived

by Chakravarti (1971).

There exists an extensive literature on the three classical geometries -

symplectic, orthogonal and unitary geometries andd their associated classical

groups (see, for instance, Dembowski, 1968). Geometry of quadric surfaces in

projective spaces (orthogonal geometry) have been used by Bose (1961), Robillard

(1969), Hill (1978) and Wolfmann (1977) for constructing linear codes. Delsarte
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and Goethals (1975) have used symplectic geometry (geometry of alternating forms)

to construct 1inear codes. Further connections between Reed-Muller codes and

symplectic forms are now well-known (see, for instance, MacWilliams and Sloane.

1977) .

3 3x + x
o 1

Goppa (1981) seems to be the first one to have used a Hermitian curve

3
+ x

2
= a over PG(2,4) to construct a new linear code.

Codes better than Gilbert-Varshamov bound.

generalized Gappa codes based on certain modular curves over GF(q) q

The original construction due to Tsfasman, Vladut and Zink (1982) of

2h I' hp , W llC

lie above Gi lbert-Varshamov bound, was further analyzed by Vladut, Katsman and

Ts fasman (1984). The curve considered is associated wi th elliptic Drinfel'd

moduli. 2For q = r , they consider a ring of polynomials A = GF(r)[T] over GF(r)

(PI) generated by a polynomial P
r

in A, that is irreducibleand a prime ideal I

over GF (1'), of degree PI = mr m where m is odd and (m,r-l) 1. The e·
description of the smooth absolutely irreducible curve X of genus g = gr over

This curveGF(r) is, however, in the abstract language of algebraic geometry.

has n = (rm+l)/(r+l) rational points over GF(r2 ) and that as m ~ 00
n

1im I/gr
mr~

1'-1. The divisor G is then defined as aQ, where Q is one of the two cusps of the

curve X (and distinct from P. 's i = 1, ... ,n) and a is a non-negative integer.
1

The code is then defined as the mapping "value at points PI" .. ,P
n

" of the

functions of the linear space L(G). The parameters of the resultant code Care

n, k ~ a - g+ 1, d ~ n-1 . This sequence of codes lie asymptotically on the

segment R
--1

1-(r-1) -6. The authors have shown that these codes have polynomial

complexity of construction.

One of the objectives of this research program is to find an elementary

construction of the algebraic curves or surfaces in projective spaces which

provide sequences of codes that perform better than the Gilbert-Varshamov bound.



- 7 -

The construction due to Vladut, Katsman and Tsfasman resembles to a great extent

(except for the bit on schemes) construction by Bose and Chakravarti (1966) and

Chakravarti (1971) of strongly regular graphs and designs from Hermitian

2varieties in PG(N,r ) and constructions by Segre (1967) of non-oval complete arcs

2in PG(2,q) for q ~ 7 using the conic xy = z for q = 4l+3 and constructions of

2non-oval arcs from cubic curves yz

Segre and D. Comite (see, Segre, 1967).

x3 with a cusp or with double points by

Link between quadrics and Hermitian yarieties in projective spaces.

= 0

3 3 3 3Bose (1972) made a special study of the Hermitian variety X
o

+ xl + x2 + x3

in PG(3,22) and derived a representation of PG(3,3) in terms of external

points, secant planes and self-conjugate tetrahedra with respect to the Hermitian

variety. This representation is very interesting because of the natural change

of the characteristic from 2 to 3. Further study of this represention and its

generalization will most probably provide a natural way to change characteristics

in the Galois arithmetic needed in computation in connection with the

combinatorics of codes and designs.

s+lA correspondence between the non degenerate Hermitian variety x + '" +
o

and a non-degenerate elliptic (hyperbolic) quadric in

PG(2N+1),s) when N = 2k(N=2k-1) was established by Heft (1971). This provides a

vital link in the investigation of n-sets of type k (n-caps, n-arcs etc.) and

associated codes and designs. This link needs to be exploited since the author

feels that this will lead to some powerful methods based on both orthogonal and

unitary (algebraic) geometries of construction of codes and designs.

New codes. symmetric designs. Hadamard difference sets from Hermitian varieties.

As we move from algebraic curves in projective planes to algebraic surfaces

in projective spaces of higher dimensions, the applicable part of algebraic
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geometry to the construction of codes and related designs, become rather complex.

In order to be able to construct codes and designs and calculate their

parameters, based on say, quadric hypersurfaces, Hermitian varieties and

symplectic forms, one has to find out properties of such geometrical objects or,

if feasible, use a computer. The geometry of quadric hypersurfaces in PG(r,q)

and Segre (1967».

project, the weight distribution of this code has been found.

The code has minimum

has been studied by Primrose, Segre, Ray-Chaudhuri, Barlotti, Tallini, Panella,

Hirschfe Id (for references see for instance, Bar lotti (1965), Dembowski (1968)

The geometry of Hermi tian varieties in PG (N, q2) has been

studied by Segre (1965, 1967) Bose (1963, 1971), Bose and Chakravarti (1966),

Chakravarti (1971) and others (see, for instance. Dembowski, 1968).

We have just constructed a linear code C(n=45, k=35, d=4) on q=4 symbols. A

parity check matrix of the form 10 x 45, was constructed from a Hermitian surface

o in PG(3,4). The columns of the matrix were labelled by the

45 . t tl f d tl 1 b 11 d b tl 10 . 1 2 2pOln s on 1e sur ace an 1e rows were a e e y 1e monomla s x
o

' Xl'

2 2
x2 ' x3 ' xox1 , xox2 , xox3 , x1x2 ' x1x3 ' x 2x3 and the entries were the values of the

monomials at the points. A computer program written by Mr. R. Tobias, a graduate

student, generated the matrix and also found that every set of 3 columns were

linearly independent but that there were sets of 4 columns which were dependent.

10The parity check matrix generates then an orthogonal array (4 ,45,4,3). Its

parameters as a linear code c l
orthogonal to the former C, are n=45, k=10. Using

programs for a personal computer, written by Paul P. Spurr (1986) in his Master's

It is A
O

=l

A22 =2160, A24 =2970, A26 =4320, A28 =40,500, A
30

=122,976, A
32

=233,415, A
24

=285,120,

A36 =233,400, A38 =97,200, A40 =20,574, A42 =4320, A44 =1620, with all other Ai equal

to zero. (Ai is the frequency of codewords of weight i).

distance 22 and hence corrects all error patterns of weight 10 or less. It is an

e·
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even weight code (that is all its codewords have even weights) although it is not

a self-orthogonal nor a formally self-orthogonal code. (A code C is called

formally self-orthogonal if C and its orthogonal C
1

have the same weight

l!nUmerator. C is weakly self orthogonal if C c c1
and (strictly) self orthogonal

if C = c1
.

MacWilliams et a1. (Hl78) have studied codes over GF(4) which have even

weights and have the 1same weight distribution as the orthogonal code C . These

codes are (If consi derable interes t because some of them attain the

Gilbert-Varshamov bound. They have also derived several 3 - and 5 - designs from

these codes,

We have worked out the weight distributions of three other codes: C
1

(n=18,

k=10, d=3) , its orthogonal (n=18,

GF(4), The columns of the 10 x 18 generator matrix of C
1

corresponds to the 18

3 3 3 3points of the Hermitian surface v2 : Xo + Xl + x2 + x3 = ° in PG(3,4), which have

at least one coordinate equal to zero and the rows correspond to the 10 monomials

of degree 2: 2 2 2 2
Its weightxo' xl' x2 ' x3 ' x oX 1 xox2 ' x

o
x3 , x1x2 ' x1x3 ' x2x3 '

distribution is Ao - 1 , A
1

=A
2

-=O, A3=18, A == A",=O, A6=540, A
7

=810, A
8

=2295,
4 .)

A
9

=17,238, A
lO

=40,581, All =84,078, A
I2

==lG2,658, A
13

=204,660, AI4=221,022,

A
15

=185,382, A1S=100,278, A17 =31,590, A
18

=7425. Thus the minimum distance is 3

and C1 is a single-error correcting code.
1

Its orthogonal C
1

(n '18, k=8) has the

weight distribution A ~l,
o

A =A =-A =,A =A =0
1 234 5 ' A =07 ' A8 =459,

This code has minimum distance 6 and corrects all error

patterns of wej1~ht 2 or less. This code resemhles to a certain ext.ent the code

s] 8 of MacWi 11 iams et 0.1. (1978) who were able to ded ve certain 5 u rles igns from
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The columns of the 10 x 27 generator matrix of C
2

corresponds to those 27

points of the Hermitian surface V
2

in PG(3,4), which have every coordinate

non-zero and the 10 rows correspond to the 10 monomials of degree 2 in the

coordinate variables Its weight distribution is Ao=l,

A =A =A =A =A =A =A =0
123 4 567 ' A =459 '

A
26

=4104, A
27

=999. This code has minimum distance 8 and hence corrects all error

patterns of weight 3 or less.

s+l s+l s+l s+l
A non-degenerate Hermitian variety V2: X

o
+ xl + x

2
+ x

3
= 0 in

PG(~),s2) has (s3+ 1 )(s2+ 1 ) points. It is known (Bose and Chakravarti, 1966) that

2
a plane of PG(3,s) meets V

2
either in a non-degenerate VI which consists of

(s3+ 1 ) points of the plane or in a degenerate VI of rank 2 which consists of e.
3 2 1 .s +s + pOlnts of the plane. In the former case, the plane may be called a

secant plane and in the latter case the plane is called a tangent plane. Thus

the code generated by the 4 x (s3+ 1 )(s2+ 1 ) matrix whose columns correspond to the

3 2
(s +l)(s +1) points of V

2
and rows to the four coordinates, is a two-weight

projective linear code over GF(s2) with n =

325
(s +s +1) = sand w

2
3 4

(s +1 ) (s -1) and

233(s +l)(s +1) - (s +1)

443(s --I)(s -s ).

(s
2

+1) (s
3

+1) and WI =(s
2

+1) (s
3

+1) ­

5 2
= s +s and the frequencies

The set of points V
2

complementary

2
to V

2
in PG(3,s ) also gives rise to a two-wejght projective linear code over

GF ( s
2

) with n = s
3

( s
3

- s
2

+s -1 ) , wI =s
5

( s -- 1 ), w2=s
2

( 84
- 8

3
- 1 ) A = ( s

3
+1 )( s

4
-1 )

WI

and
443A =(8 -l)(s -s ).w

2

Thus for s=2, we get two two-weight projective linear codes over GF(4). The

parameters of the code C
3

corresponding to the 45 points of the Hermitian surface

V
2

are n=45, k=4, d=32 and the frequency distribution of the weights of this code
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The graph on V=44=256 vertices

corresponding to this code is strongly regular and its adjacency matrix A=B
2

-B
1

As a two-class association scheme itshas the eigenvalues PO=-15. P1~17. p
2

=-15.

1 1
parameters are n1=135, n2=120, P11=70, P12=64, This

last equality implies that B2 (the association matrix of the second associates)

is the incidence matrix of a symmetric BIB design (v=256, k=120, A=56) and 2 B2-J

is a Hadamard matrix of order 28 which corresponds to the Hadamard difference set

theNote that I + B is the incidence matrix of
1

complementary symmetric BIB design (v=256, k=136, A=72).

8v=2 ,

The code C
3

corresponding to the 40 points of V 2 the set complementary to V 2

in PG(3.4) has the parameters n=40, k=4, d=28 and the weight-distribution AO=1,

and all other A.=O.
1

The adjacency matrix /\=B
2

-13
1

of the

strongly regular graph on v=256 vertices associated wi th this code has the

B1 (the association matrix of the first

associ ates in this 2-class associati on scheme is the incidence matrix of the

symmetric BIB design (v=256, k~120, A=56) and I + B
2

is the incidence matrix of

the SBIB (v=256, k=136, A=72).

Since a projective (n,k) code rover GF (s ) with weights w.
1

i=1 s

determines a projective (n',k') code over GF(s) with weights w: i=1 .... s, n'
1

n(sr_1)/(s-1), k'=kr, w~=sr-1w., i=1, ... s, (Delsarte, 1972), the two projective
1 1

two-weight codes C
3

and over GF(4) give rise to two projective binary

two-weight codes C4 and (;4 (say) respectively. The two-weight binary code C
4

corresponding to C3 , has the parameters n'=135. k'=8, w'=64
1 '

A
64

=135, A
72

=120. Then the strongly regular graph associated with this code C4

Consider the 120has the same parameters as these of the graph of C3 .

code-vectors each of weight 72, which are non-adjacent to (second associates of)
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the null code-word, Then since
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v =

= 56. it follows that these 120

k = 27_23 , A = 26_23 , On the other

hand the 135 code vectors each of weight 64 which are adjacent to (first

associate of) the null codeword , together with the null vector gives rise to the

difference set (v 2
Pll = 72,

of the sequence of symmetric BIB designs with v =

The author has now generalized the above construction to the case of the

intersections of a non-degenerate Hermitian variety VN-1 by the hyperplanes of

2PG(N.2 ) for every N > 1, This construction provides the sequence of two-weight

linear codes over GF(4) with parameters n = (22N+1 + (-2)N)/3, k =

2N-1 22N-1 + (_2)N-1, A 2N+1 ()N+1 ()N2 ,w2 = w
1

= n1 = 2 + -2 + -2 -1,

Using the associated strongly regular graph one gets the incidence matrices

22 (N+l). k = 22N+1_ 2N, A = e·
22N_2N and the corresponding sequence of Hadamard matrices H N+1' For N even the

4

22N+1_2 N_1 binary codewords of weight 22N together with the null codeword form a

Hadamard difference set V=2 2 (N+l), k = 22N +1 - 2N, A=2 2N_2 N and the 22N+l+2N

binary codewords of weight 22N+ 2N form a difference set v = 22N+2 . k = 22N+1+2N,

2N N 2N-l N . 2N N
A = 2 +2. For odd N, the 2 -2 bInary codewords each of weight 2 +2 form

a Hadamard difference set V=2 2 (N+1), k=2 2N+1_2N, A = 22N _2N and the 22N+1+2N_1

codewords each of weight 22N together with the null codeword form a difference

These resul ts together wi th proofs wi 11 be reported in another

communication,
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