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1. INTRODUCTION

There are many examples of random vibrations in the real world, ego a ship rolling

at sea, car vibration on the road, brain-wave records in neurophysiology etc. Recently

there has been a growing interest in modeling these events as nonlinear time series

models (Ozaki (1985)). In order to use nonlinear time series models in practice one

must be able to fit the models to data and estimate the parameters. Computational

procedures for determining parameters for various model classes together with the

theoretical properties of the resulting estimates are outlined in Tjostheim (1086) and

the references therein.

The theory of estimating equations was originally proposed by Godambe (10GO) for

i.i.d. observations and recently extended to discrete time stochastic processes by

Godarnbe (1085). The basic ideas. of Godambe have been further adapted and general­

ized for time continuous real valued semimartingales by Thavaneswaran and Tholllp~on

(1086). The particular statistical relevance and lucidity of the estimating equation

method for ~tatistical mode"ls urfder present study should be appreciated against the

background of the fundamental difficulties encountered in likelihood estimation when

the variance of the observation error depends on the parameter of interest Godambe,

(1985, 3.2).

In this paper we will try to develop a more systematic approach and discuss a gen­

eral framework for finite sample nonlinear time series estimation. Our approach yields

the most recent estimation results for nonlinear time series as special cases, and. infact,

we are able to weaken the conditions in the maximum likelihood case. \Ve derive the

recursive version of the optimal estimate and apply it to obtain a recursive estimate for

a parameter in a state space model.

e.
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In section 2 we present Godambe's (1985) theorem with applications in nonlinear

time series. Section 3 deals with a recursive version (on line procce! lire) of the optimal

estimate and shows through an example that this procedure can be used to obtain a

recursive estimate without making any distributional assumptions on the errors. In

section 4 the theory of estimating equations together with the Kalman filter algorithm

are applied to obtain an optimal estimate for a parameter which is usually assumed

known in the state-space set up.

2. GODAMBE'S THEOREM AND SOME APPLICATIONS

In this section we recall Godambe's (1985) theorem on stochastic processes and

apply it to obtain optimal estimates for recently proposed nonlinear time series models.

Let {Yt1 td} be a discrete time stochastic process taking values io R anJ defined

on a probability space ( n, A, F). The index set I is the set o( all positin integers .
.

\Ve assume that observations ( Yl' Y'lJ ... J Yn )! are:ayaiIa;~le and that the parameter

8 € 8, a compact subset of R. Let 1 be a class of distributions and Ff be the (j field

generated by Y upto time t. Following Godambe (1985) we say that any real function 9

of the variates YIJ ... , Yn and the parameter 8, satisfying certain regularity conditions.

is called a regular unbiased estimating function if.

Let L be the class of estimating functions 9 of the form
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where the function h, is such that E[ h, I Pc-1 I = 0 ( t = 1, . , . , n ) and al_l is a func-

tion of YI' , , ., Y'-1 and 0, for t = 1, , . " n.

Theorem 1. In the class L of unbiased estimating functions g , the optimum

estimating function g. is the one which minimizes

and this is given by

"g. = E hI at-1 where at-l = [E( Bhl/Bf) IPc-I)] /E( h? IPc-I ) (~,l)
1-1

(see Godambe (1985)). For further motivation of this optimality based on effi­

ciency considerations see Lindsay (1985).

2.1 RAJ.'tL>OM COEFFICIENT AUTOREGRESSIVE (RCA) ;\IODEL

Random coefficient autoregressive models are defined by allowing random additive

perturbations of the Autoregressive (.ill) coefficients of ordinary .ill models. \\'e

assume that the random process {YI} is given by

e.

p

Yt - E ( f) i + bj(t) ) Yt-i = e,
i-I

(.') .))-'-

where OJ; i = 1,2, , . . ,p are the parameters to be estimated, {e l } and {b,(t)} are zero

mean square integrable independent processes and the variances are denoted by (j; and

(j;; bj(t) ( i = 1,2, .. . ,p ) are independent of {el} and {YI_.}. b(t) may be thought of as

incorporating environmental stochastlcity. For example weather conditions might
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make b(t) a random variable having a binomial distribution.

n p

Let 9j = ~ h, ai,'-1 where h, = y, - E[ y, I F'f-l 1 = y, - ~ 0 j Y'-i be the estimat-
'-1 i-I

ing function for 0 i. Then it follows from Theorem 1 that the optimal estimating func­

tion for 0 i is given by

n

9t = ~ h, at.'-1
'-1

where <'-1 = [ E( a h,/a 8 i IF'f-l ) 1/E( h? I F'f-l ). Now it can be shown that

•aj,'_l " p " "= -Y'-i / { (7; + ~ Yi-i (7; }
i-l

and the optimal estimate for 0' = ( 0 11 ..• lOp) can be obtained by solving the equa-

tions

n

~ h, ai,t-l = 0 J i = 1,2 1 ••• 1 p.
, -'1

This leads to

',- r',,'
"_ ".,' , ~ ,; ~ L j

n n

8n = ( ~ Yc-l ~-1 / We r 1
( ~ Yc-lY' / W, )

'-p+l '-p+l

where ~-1 = ( Y'-ll ... 1 Y,_p) and W, = (7; + }~-1 }~-1 (7;' In the special case of a

model with one parameter 0 given by

Y, - ( 8 + b, ) Y'-1 = e,

we have at_l = -Y'-l / ((1; + y?'-1 (1;) and the optimal estimate is given by

(2.3)
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(2.4)

Nicholls and Quinn (19S0) obtained least squares estimate of 0 i i = I, ... , p and

their estimate is somewhat different from what is given here. For comparison, we con-

sider only the special case with one parameter. In this case the optimal estimate given

in (2.4) simplifies down to

.,
f\ yt-lIE ., .,.,

t-2 Cf; + Cf; yt-l
(.) -)_..")

while the one given by Nicholls and Quinn (19S0), Tjostheim (1986) is

_ f\ f\ .,

of\ = E Yt-l Yt IE yt-l
t-2 t-2

As indicated by Nicholls and Quinn (1980) 8" will not be efficient but strongly con­

sistent and asymptotically normally distributed. 8f\ also has the consistency and

asymptotic normality properties. In addition the optimal estimator 8f\ uses a weighting

factor, depending upon the variance of bt , for the numerator and denominator. It

should be noted that Cf; and Cf; are not known in practice. However, 8f\ could be used

initially to estimate Cf; and Cf; as in ~~icholls and Quinn (1980). Then 0" may be calcu­

lated with the estimated values of Cf; and Cf; .

2.2 DOUBLY STOCHASTIC TThIE SERIES

Random coefficient autoregressive sequences given in (2.3) are special cases of

what Tjostheim (19S6) refers to as doubly stochastic time series models. In the non-

linear case these models are given by

e.
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(2.6)

where {9 + b, } of (2.3) is now replaced by a more general stochastic sequence {o I} and

YI-l is replaced by a function of the past, f( t, Pc-I)' \Vhen 9 I is a Moving Average

(~L>\) sequence of the form

(2.7)

<t!: •
" it.;.." i

where 91, el are square integrable independent random variables and {€t} consists of

zero mean square integrable random variables independent of {e t }. In this case

E( Yt IPc-I) depends on the posterior mean, m t = E( €t IFf) and variance

It = E[( £t - m t fl Ff I of £t • Thus for the evaluation of mt and ""'t we further a.<;sume

that {et } and {€t} are Gaussian and that Yo = o. Then mt and it satisfy the following

Kalman-like recursive algorithms (see Spiryayev (1984) p,439)

I .., :.' . .-

(7; f(t I F'f-d lYt - (8 + mt-I) f(t I Ff-tll
(7; + f'2(t, Pc-d ((7; + It~d

and

where 10 = (7; and mo = O. Hence

and
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E(hll Ff) = E{[Ye - E(Ye IFf-df I Ff-d

can be calculated recursively. Then the optimal estimating function turns out to be

"g: = E heat_l
e-l

Thus the optimal estimate is given by

." "
0" = Eat-lYe / E at_d(t, Ff-d

t-:.! t-2

where

Since It is independent of 0, the relation

can be used to calculate this derivative recursively.

Conditional least squares approach of Tjostheim (1986) leads to an estimator

(~.8)

(~.9)

e.

_ n n

0" = E f( t, Pc-I) (1 + (amt_vaO )) Yt / E [f(t, Ff-d (1 + (um t_l,'80))]
t-2 t-Z

which does not take into account the variances (7; and (7;. However as can be seen

from (2.8) and (2.9), the optimal estimate 0" adopts a weighting scheme based on (7; e
and (7;. In practice these quantities may be obtained using a nonlinear optimization
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algorithm as indicated later in section 4.

2.3 THRESHOLD AUTOREGRESSIVE PROCESS

Now we consider an application of the theory of estimating equations in the con-

text of the threshold autoregressive model with only one residual process given in

Tjostheim (1986):

p

Yt - I: 8 j Yt-lHj( Yt-l ) = er
j-l

(2.10)

where Hi Yt-l ) = I( Yt-l ! Dj ), 1(.) being the indicator function and D I • D'2' ... I Dm

are disjoint regions of R such that UDj = R. Then we have

P
ht = Yt - E( Yt IPc-I) = Yt - ~ 8 j Yt H ;( Yt-l )

. j';l

and E( h? IPc-I) = E( e? ) = (1;. Hence the optimal estimate for 8 j based on the n

observations is 'given by

• n n

8 j = I: Yt Yt-l Hi Yt-l ) / ~ Y?-1 H j ( Yt-l )
1-1 t-2

(2.11)

which turns out to be the same estimate obtained in Tjostheim (1986). This is because

E( h,'2 IPc-I) is a constant which need not be the case in general.

The nonlinear time series models of this section are related to the Kalman filter-

ing set up, except for the important difference that the parameter 8 is replaced by a

random process {8 t} with E(8 t IPc-d satisfying a recursive relation.
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3. RECURSIVE ESTThtfATION

So far we have considered the parameter estimation based on all the available

data. When data come successively in time it is natural to look for a recursive esti-

mate for the parameter involved. Aase (1983) proposed a recursive parameter estima­

tion procedure for a nonlinear time series model based on Kalman filtering. In this sec-

tion we develop a recursive scheme based on the optimal estimating equation.

\Ve now consider estimating functions of the form

"g" = E he at-1
t-1

•

f( t-I, Y ) = f( t-I, 17-1). This choice of he covers most of the nonlinear time series

models of section 2 except the doubly stochastic case. (In the doubly stochastic C:lSe

ht = Yt - (B + mt_df(t-I, y) where m e-1 is a function of B and this is more diflicl1lt to

based on n observations. Suppose he = Ye -Bf( t-l, y) where
•

e.

handle ).

Then the optimal estimating function can be written as

"g" = E at-1 ( Ye - 8 f( t -1, Y ) )
1-1

and the optimal estimate based on the first t -1 observations is given by

• e-1 t-1

8e- 1 = E a:-1 Y, / E a:_1 f( 5-1, Y ).
• -2 ,-2

(3.1 )

"

\Vhen the t eh observation becomes available, the estimate based on the first t observa-

tions is given by
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At'e, == ~ a;_l Y, / ~ a,-_d( 8--1, Y )

.. , .
Then el , - 8t-l == K t [ ~ a'-_l Y, - 0'-1 K,-lj

,-2

,
where' K t-

1 == ~ a:_d( a-I, y ) .
,-2

•• t '-1
Thus jt - 9t - 1 =KtlE a'--1 Y, - K'-I( E a:-1 y, )(1(;:\ + at-l f( t-l, y) )]

4~2 4~2

=K,[ at--l Yt - 8'-1 at-l f( t--l, Y) 1

Now it is easy to show that

K t - 1
K t == ----------

1 + f( t-l, Y } 'Jt":"l K t - 1

and.

K t - 1at-l •
8t =8,_1+ l+f(t-l ) - K lYt- 8t-;1;f(t-l,y)]

. , y 4'-1 t-l

(3.2)

(3.3)

(3.4)

The algorithm in (3.4) gives the new estimate at time t as the old estimate at time

t -1 p'las an a.djustment. This adjustment is based on the prediction error

y, - E( 'Yt IPc-I ), since the term 8t-l f( t -1, Y ) == E( Yt IPc-I) can be considered as an

estima.ted forecast of Yt given Pc-I. Given starting values 80 and /(0 we can compute

the estimator recursively using (3.3) and (3.4). The recursive estimate 8t in (3.4) is

usualfy referred to as an "on-line" estimate a.nd it is very appealing computationally,

espedaHy when data are gathered sequentially. 80 and K o can usually be obtained

from am init.ial stret.ch of data.. It is of interest to note that the recursive estimate

obtame~ here is derived. from the optimal estimating equation and it does not depend



- 12-

on Aase's (1983) proposal. This algorithm may be interpreted in the Bayesian frame­

work by considering the following state space form

':II = 0I J( t I F1-1 ) + hI ,

0, = 0

and assuming that h, and 0 are independently normally distributed. Then the algo­

rithm obtained here is the same as the nonlinear version of the Kalman filter. In par-

ticular if J(t, F1-d = ':11-1 then this algorithm is the same as the usual Kalman filter. It

should be noted that we have not made any distributional assumptions for hI or B to

obtain the recursive algorithms (3.3) and (3.4).

If we solve the recursive relations (3.3) and (3..t), using initial values 80 and K o we

obtain an expression for 0II the "off-line" version:

•

e.
t-l

00 Ko1 + ~ a'·_1 ':I,
. ,-2
0" = -----------• t-l

K 01 + ~ a,·_d( a-I, ':I )
,-2

(3 ..S)

This version will sometimes be better studied for certain theoretical investigations. It

should be mentioned that until recently very little was known about the theoretical

properties of these procedures and the corresponding estimates except the results for

the random coefficient model (see Nicholls and Quinn (1982». Tjostheim (1 98~a,b)

considered a wide class of nonlinear time series models and developed a systematic

asymptotic theory. The asymptotic properties such as consistency and normality of iJ t

can be proved as in Tj0stheim (1986) or Thavaneswaran and Thompson (1986) subject

to certain regularity conditions.
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3.1 AASE'S MODEL (lgS3)

For recursive estimation in the case of a nonlinear time series model Aase (1983)

considered a model of the form

Yt = g( t-l, Pc-l ) + 0 f( t-l, Pc-l ) + (J ( t-l, Pc-l ) et

where g, f and (J are general ( nonlinear) real valued functions of the process y. whose

c9nditional distribution is determined by the values taken during the period [0, t-l].

The parnmeter e is to be estimated and it is assumed that the error sequence et sat is-

fies

E( et I Pc-l ) =°
E( e? IFf-l ) = 1 for t = 0, 1,2,....

Under this set up Aase (1983) proposed a recursive scheme based on the model refer­

ence adaptive system (MRAS) approach ( see Landau (1976)). Here based on the
.

theory of estimating equations we arrive at the same scheme. In fact it can be shown

that by taking

ht = Yt - E(Yt IPc-d = Yt - 0 f(t-l, y) - g(t-l, y)

at-l = f( t-I, Y ) /(J::!( t-I, y) ,

and
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A A K e- 1 f( t -1, y ) •
8c =- 8e- 1 + q2( t-l, Y ) + f2( t-l, y) K

e
-

1
[Ye - g( t-l, Y ) - 8e- 1 f( t-l, Y ) I

This is the same recursive estimate for 8 motivated some what differently in Aase

(1983). If we assume that the ec's are normally distributed then the above estimate

becomes the maximum likelihood estimate and the algorithm may be interpreted as the

Newton-Raphson algorithm.

4. PREFn.TERED OPTIMAL ESTThlATION

Sections 2 and 3 dealt with optimal estimation and recursive estimation for adap-

tive systems. Now we consider optimal parameter estimation for a nonadaptive sys-

tern. This system is governed by a sta:te space model in which the states (random) as

well as an additional parameter (deterministic) are unknown. To illust~ate the problem

we focus on a state-space representation of a particular autoregressive moving average

(A..R~l-\) process of order (1,1) considered by Jones (198.5). This may be given as fol-

lows.

Xc = 8X t -l + qUe

Yt = Xc + Vt

where {ue}, {Vt} are zero mean square integrable independent normal sequences having

unit variance. Often a major problem in a state-space model is to estimate It. This

problem can be set up in two stages. In the first stage we have to solve a filtering

problem in which m t = E[ X t IFf 1is to be determined. Then m t is the optimal (in the

mean squared error sense) estimate given the observations up to time t and given the

value of the deterministic parameter '0. In the second stage we look for an optimal

..

•
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estimate for 8 and a corresponding estimate for X t •

For fixed 8, Kalman filter algorithms can be used as follows.

(1) Calculate a one step prediction:

E[ Xt I F't-I I = 8m t-l where me = E[ Xt I F't ].

(2) Calculate its variance: P( t IF'f-l ) = P( t -1 IF't-l ) 8'2 + (7'2.

(3) The prediction of the next observation is E[ Yt IF'f-l ] = E[ X t IFl'-l ]

(4) Calculate the innovation: It = Yt - E[ Yt IF't-l I

(5) The innovation variance is Ye = P( t I F't-I )+ 1

(6) P( t I F't-I )
The Kalman gain is K t = ----­

Yc

(7) Update the estimate of the state: m t = emt-I + K t It

(8) Update its variance: Pt = P( tit) = P( t I t-I ) - K t P( t I t-I )

For given e the steps (1) to (8) can be used to obtain the estimate mt+l and Pt+l from

m t and Pt starting from the initial values mo and Po. Now we consider optimal est ima-

n

tion of 8 focussing on the equation given in step (7). If we take g = 2: at_1h t with
t-'1

ht = Ktlt! then E(ht IF't-d = 0 and E(h? I F't-l) = K t'2Yc = l~~ . ~ote that \~ depends on

8. Thus this corresponds to Godambe's (HJ85) set up in which E( h? IFl'-l ) depends

on 8 and hence the superiority of this approach can be argued as in Godambe (UJS.5) .

Using Theorem 1 it is easy to show that the optimal estimating function is given by
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where at-l = mt-l / w,. Then the optimal estimate of 0 satisfies the equation

nAn
E mt mt- 1 / Wi = 0 E m?_l / Wi (4.1 )

This estimate may be obtained numerically. For example, we can calculate the differ­

ence between the L.H.S. and R.H.S. of (4.1) for a given value of 0 and search for a 8

which will make this difference as small as we please. Same steps can be followed to

obtain optimal estimate of a parameter in a nonlinc:lr ~tate-space model having normal

errors. The same procedure can be used to obtain the optimal estimate in a more gen­

eral nonlinear state space model in which the state and observation vectors are non­

linear time series models as in Sh~ryayev (1984). Such extensions will be treated in a

subsequent paper.

5. SlTh1MARY AJ."ID CONCLUSIONS

In this paper we have applied the theory of estimating equations to obtain optimal

estimates for a number of nonlinear time series models of adaptive as well as non adap-

tive nature. In particular we considered estimation for RCA and Threshold AR

models. \Ve also discussed the recursive version of the optimal estimate which led to

an algorithm similar to the Kalman tilter algorithm. Also we looked at parameter esti­

mation for a state-space system which cannot be observed directly.

•
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