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ABSTRACT.For the usual linear model, bearing the plausibility of a redundant sub

set of parameters, pre-test and Stein-rule estimators based on the trimmed least

squares estimation theory are considered. Compared to parallel M-estimators, the

proposed L-estimators are computationally simpler and are scale-equivariant too.

In the light of asymptotic distributional risks, the relative (risk-)efficiency

results for these trimmed L-estimators and their improved versions are studied

in detail. Positive-rule L-estimators are also considered in this context.

1. INTRODUCTION. Consider the usual regression model

y,
~

S'x, + e, ; x.- -~ ~ -~
(x ..... ,x ,) , x , = 1, for i=l, ... ,n,

o~ p~ o~
(1.1)

where S (S , ... ,6) is a vector of unknown parameters, the x, are known vectorso p _~

of regression constants, and the errors e, are independent and identically distri
~

buted random variables (i.i.d.r.v.) with a (unknown) continuous distribution func-
, I

tion F, defined on the real line R . We partition S' = ( Sl' S2 ) where S. is a
- - - -J

Pj-vector, j=1,2; Pl+P2 = p+l. We are primarily interested in (robust) estimation

of ~l when ~2 ' though unknown, is suspected to be close to a pivot ~~ , which we

may take (without any loss of generality) as 0 . For situations involving such an

uncertain prior , we may refer to Saleh and Sen (1987) where improved least squares

estimators (LSE) of ~l have been studied. Since the LSE are known to be generally

non-robust, other possibilities for such improved estimators (retaining robustness)

include the R-estimators and M-estimators which were treated earlier by Saleh and

Sen (1986 ) and Sen and Saleh (1987), among others. However, generally, these R-

and M-estirnators are computationally quite cumbersome, and, moreover, the
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M-estimators are not usually scale-equivariant, and their studentized versions are

generally less attractive. For these reasons, we propose to incorporate the trimmed

least squares estimators (TLSE) in this improved estimation problem. For a good

0,J ..

account of the TLSE, we may refer to Jureckova and Sen (1984) where the earlier

',J .-
works by Koenker and Bassett (1978), Ruppert and Carroll (1980), Jureckova (1983 a,b,

1984) and others are all cited.

Corresponding to pre-specified left and right trimming proportions aI' 1- a Z'

we may denote a TLSE of ~ in (1.1) by ~n(al,aZ); here 0 < a l < a Z < 1. This esti

mator for the full model in (1.1) is termed an unrestricted TLSE (UTLSE). Next, we
,

partition x. = (x.
l

,x.
2

) and consider the restricted model Y.
-1 -1 -1 1

I

Slx'l+ e. , i=l,
- -1 1

*~nl(al,a2)' is termed a restricted
I I

~n2 (al ,aZ)) . If ~2 = 0, then

... ,n. For this model, the TLSE of ~l ' denoted by
I

TLSE (RTLSE). We also let ~n(al,aZ) = (~nl(al,a2)'

*generally ~nl(al,a2) has a smaller risk ( with quadratic loss) than ~nl(al,a2)'

*However, when ~Z I ~, ~nl(al,a2) may not only become biased, it may as well be in-

consistent and inefficient( relative to the TLSE). A pre-test estimator (PTE) may
. ~"

usually be used to eliminate this undesirability of the RTLSE : A preliminary test

of the null hypothesis H
O

: ~2 = ~ may b~ inc~iPorated in choosing between the

UTLSE and RTLSE ; we term this estimator as a preliminary test TLSE (PTTLSE). In

the case of the usual LSE, it has been observed [ viz., Saleh and Sen (1984a,b)]

that a PTE is a good comprom se : Unlike the RLSE, it does not have unbounded risk

(when ~2 moves away from ~ ), while, like the RLSE, near the pivot (0), the risk

of the PTE is smaller than the LSE. However, the PTE may not dominate either the

ULSE or RLSE. Some further improvements are possible if PI and Pz are both greater

than 2. Shrinkage (or Stein-rule)versions of the LSE (SLSE) can be constructed and

in some well defined manner, the SLSE may dominate the ULSE (although it may not

dominate the PTE); we may refer to Saleh and Sen (1987) where other works have also

been discussed in detail. We propose to extend this picture to the general case of

TLSE and advocate the use of these improved versions .Our primary emphasis will be

on the PTTLSE and the shrinkage TLSE (STLSE).
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Along with the preliminary notions, the different versions of the TLSE are

introduced in Section 2. Section 3 deals with the notion of asymptotic distributional

risk (ADR) where local alternatives (to the pivot) playa prominant role. In this

context, we need to study also the asymptotic properties of tests for HO: ~2 0

based on these TLSE, and these are presented in Section 4. The main results on the

ADR along with the relative dominance picture are considered in Section 5. A brief

treatment of the positive-rule TLSE (PRTLSE) is also included in this section.

2. THE PROPOSED VERSIONS OF TLSE

Corresponding to the model (1.1), we write Y
-n

(xl' ... ,x) , so that we may rewrite (1.1) as Y
- -n -n

, ,
(Yl,···,Yn) and ~n

XS+e;e =(el, ... ,e).
-n- -n -n n

Also, we partition X as (lL ,X
2

) where X. is nXp., for i=1,2. Then, the rest-
-n ~Ln - n -~n ~

rained model is Y = X lSI + e . We denote by
-n -n - -n

(2.1)nQ = X X and partition Q =CCQ .. ». '-1 2 '-n -n-n _n -n~J ~,J-,

where Q " is of order p. xp .. i,j=l, 2. We make the following assumptions.
-n~J ~ J

(A) There exists

lim Q = Qn-+oo -n _

a positive definite (p.d.) matrix Q (= «Q ..». '-1 2
,- -~J,~ , J - ,

max ' -1 '~." , , . ,- .
and 1<'< {X.D x.} O(n), as n + 00 •

~ n ,..~.;:n _~-

), such that

(2.2)

For later use, we denote by

(2.3)*Q .*ceq. ')}i,j=1,2
-~J

-1 ij =
and Q = ({~_ )J i, j =1,2

aI' a 2 be positive numbers such that 0 < a
l

< a
2

< 1, and consider a compact

-1 -1 U
J(al ,a2 ,n) = [F (al ) - n, F (a2)+ n] = Jl(al;n)U JO(al ,a2 ,n) J Z(a2,n),

-1 -1 -1
IF (ai)-n, F (ai )+ n] , i=1,2 and JO(al'~2,n) = [F (al)+n,

-1 ij
9n = « 9n »i,j=1,2

(B) Let

interval

where J. (a. ,n) =
~ ~

-1
F (a

2
) - n]. We assume that the d.f. F is absolutely continuous and its density

f is positive and continuous on J.(a.,n), for i=1,2 and some n >0; also, we assume
~ ~

that f has a bounded first derivative f' in J.(a.,n), i=1,2.
~ ~

Following Koenker and Bassett (1978), we define the unrestricted regression

quantiles (URQ)
- p+l
S(a.) ( E R ), i=1,2 (for the full model in (1.1» as the- ~

solutions ( t ) to the minimization problem

- x, t
.... ,J- .....

= min, where p (x)
s

1
x[ s - I(x < 0)], x SR. (2.4)



Although the solution in (Z.4) may not be generally unique. one can always adapt

(Z.5)for i =1 •... ,n.

unique one. Let A be diagonal matrix with the elements
-n,-

or Y. > x.S(aZ)
1. - -1.-O. if Yi ~ ~i ~(al)

1 • otherwise

a ..
1.1.

a convention to choose a

The TLSE of S is then defined by the ordinary LSE based on the subset of the Y.
1.

for which a .. = 1, i=l, ... ,n. We call this estimator as the UTLSE and denote it by
1.1. ,

~n(al,aZ) = (~~~n~n)-(~~~n~n) = ( ~ln(al,aZ)' ~Zn(al.aZ) ) (Z.6)

where ~in(al.aZ) is a Pi-vector. i=1.2. Pl+P2 = p+l. The RTLSE is defined in a

similar manner (but working with the restrained model). and is denoted by

(2.7)'* - '*= (X A X ) (X A Y ) •_n_n_n -n-n-n

*= Diag(a ..• i=l •...• n) is defined as in (2.5) with the URQ S(a.) being
1.1. J

*~ln (al ·a2)

*where A
-n

replaced by the restricted RQ (RRQ). defined as in (2.4) (but with the reduced
,

model. i.e .• x.t being replaced by x1.t
l
).

-J- - J-

Next. we may note that both the PTE and Stein-rule estimator rest on a suitable

test statistic for testing the ~Ult· hy!,othesi~,HO: ~ O. For this purpose, we

may proceed as in Juretkova.(1983).' and define t, ..' 1"

(2.8)

(2.10)

where the URQ are defined as in (2.4), and

2 "
S =YA[ I

n -n-n -n

,
- X (X A X )-X ]A Y

-n -n-n-n -n -n-n
(2.11)

is the usual residual sum of squares computed from the set of observations for

which a .. = 1 • i=l •...• n. With this adoption of the preliminary test statistic [in
1.1.

(2.10)]. we may then formulate the PTTLSE as

PT * (' 2 , Z
~ln(al·aZ) = ~ln(al·a2)I(~n < ~n.E) + ~ln(al·a2)I(~n > ~n.E)' (2.12)

where £ stands for the critical level of Jl
n
2

at the significance level E :
n.E

a < E < 1. Note that for the PTE, we only need that Pl,P2 are positive integers.

not necessarily greater than 2.
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A Stein-rule or shrinkage estimator is generally adapted to a given quadratic

loss function; in this specific problem, this calls for a p.d. matrix W of order

W. We may define

(n) -1
ch (nW(Qll Z) ), (Z .13)

Pl - - .
and Sen (1987) [where the case of the classical

PIXP1' and the actual estimator depends on this choice of

dn = smallest characteristic root of (n~(gi~:z)-l) =

and following the lines of Saleh

LSE has been treated in detail],

S *
~ln(al,aZ) = ~ln(al,aZ) + [

we may consider the following STLSE :

-1 (n) -l,.--Z *
~PI-Cdn~ ~11.2 n ~n ]( ~ln(al,a2)-~ln(al,a2)],(Z.14)

where

o < C < c(Pl'PZ) is a positive shrinkage factor. (2.15)

We shall provide bounds for c(Pl,P2) later on. In passing we may remark that for

this linear model problem, the use of the usual Mahalanobis distance for the loss

function has been advocated in many cases [ viz., Saleh and Sen (1987)], and if the

n-1Q(n)same is done here, we are led to a specific choice of W , so that d in
-l1.Z n

(2.13) then reduces to 1, and (2.14) simplifies to

S* * -2*
:1n(al ,aZ) = ~ln(al,a2) + (1 - cr.n-H·'~in(at-~a2)';"7-~lri(al,a.2)] (2.16)

which is another convex combination of. the UTLSEandcRTLSE. We shall mainly be

concerned with the specific STLSE in (2-.16) and discuss about the shrinkage factor
. i .'~

in (2.15).

3. WHITHER ADR ?

Asymptotic considerations dominate the formulation of the TLSE , and as we

shall see in the next section that in this sense, the theory of PTE and STLSE can

also be formulated in a very unified manner. On the contrary, the treatment for

the small sample case is very much dependent on the underlying F, and we may not

be able to draw a picture pertaining to the general pattern. While the justifications

for asymptotic considerations in the study of ADR are given in detail in Sen (1984),

Sen and Saleh (1985), among other places, we may without much repetitions of their

arguments mention the following salient points.

First, we formulate the risk function with a quadratic loss. As has been

mentioned in the previous section, we would like to incorporate the Mahalanobis

distance in the formulation of the loss function. Specifically, we take the loss



in estimating ~l by an estimator ~n as
, (n)

D( ~n ' ~l ) = [n(~n - ~l) Sll.2( ~n - ~l) ],

so that the risk is given by

p(~n' ~l) = E{D(~n'~l)} = Tr(nsi~~2E[(~n - ~l)(~n - ~l) ']).

6

(3.1)

(3.2)

Even in this simple form, there are some problems connected with the evaluation of

this risks for the various versions of the TLSE considered in Section 2. Note that

the RQ are non-linear functions of the observations and hence, not only the a .. in
~~

(2.5) are stochastic in nature, they are also non-linear functions of the observa-

tions. Whereas the asymptotic distribution theory of these RQ and the TLSE, mostly

developed in Jure~kova (1983,1984), relate to the usual weak convergence results

( or to some weak representations in terms of independentr.v. 's) which may not be

strong enough to justify the moment· convergence results needed for (3.2). Even if

they were justified, there is another basic problem. For the UTLSE, computation of

the mean product matrix is simplest, and this matrix is independent of the nuisance

parameter ~2 . However, for the RTLSE,thi.-s mean product matrix depends on ~2 also

( when computed for the full model in ·{l.lJt, 'and for any (fixed) ~2 F ~ , as n

increases, the risk in (];·2). becomes-<indeffnitely "large C i. e., unbounded); although

at §2 = 0, this risk is generally smaller than that of the UTLSE. Thus, in an asymp

totic setup, for any fixed ~2 f ~, theRTLSE becomes heavily biased and inefficient

estimator of ~l . This suggests that in our setup, (3.2) may depend as well on the

unknown ~2' and also, we need to localize ~2 in the neighbourhood of the pivot

so as to obtain a meaningful picture. A similar consideration holds for the PTTLSE

in (2.12). For any fixed ~2 f ~ , asymptotically, the PTE reduces to the UTLSE if

the test based on ~ in (2.10) is consistent (as will be shown in the next section).

A similar asymptotic equivalence result holds for the STLSE in (2.16) [or (2.14)].

r- 2
However, in the case of the STLSE, we have an additional problem. Since~n appears

in the estimator, computation of the second mOment of an STLSE may require negative

moments of the test statistics. In the normal theory case, by appeal to the usual

non-central chi square d.f. 's for the test statistics, these negative moments can
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be evaluated by making use of the Stein-identities, in the non-normal or non-linear

cases, convergence of the negative moments may demand quite restrictive regularity

conditions. To eliminate these drawbacks , we prescribe the following :

(3.3)~2H
n

(i) Confine to a sequence of local alternatives, viz.,

-~ P2
~2.n = n ~2' where ~2 (fixed) ~ R

note that the null hypothesis case is covered by letting ~2= ~.

(ii) Show that for an estimator b of ~l' under consideration, when {H } holds,
-n n

k:
I

PI
lim p{ n 2(b - ~l ) .2 ~ H } = G( ~;~2,g,y ) exists,'! x ~ R (3.4)

n~ -n n

where Q is defined by (2.2) and y is a suitable scale factor, depending on the d. f. F.

(iii) Instead of the risk in (3.2), use the asymptotic distribution in (3.4) to

formulate the asymptotic distributional risk (ADR) as

(3.5)

We shall prescribe the use of this ADR instead of the actual risk computed

from (3.2), and we shall see later on that this results in considerable relalaxation

of the regularity conditions. On the,Q~he~;haI14i,<~e ~h~ul4 keep in mind that the

comparative results based on (3.5) ·ma:y not necessari,l,:y· apply.to- the actual risk

situation when some of these extr~ .re.gularity .coJ.~.ditions_may not hold.

4. SOME ASYMPTOTICS ON TLSE AND 1:n
As we have discussed in Section 3, for our study of the ADR results, we need

to study the consistency of the test based on 1:~ in (2.10) and also the asymptotic

distribution theory of the different versions pf the TLSE leading to appropriate

forms for (3.4). Towards this, we start with a basic asymptotic result on TLSE

discussed in detail in Juret'kova (1984). Let

(4.3)

(4.1)

(4.2)1)J =(1)Jl"'"-n
i=l, ... ,n,

-1 . -1 '
1)JF(Ei ) = F (al ) \I Ei f\. F (a2) ; Ei = Yi - ~i~' i=l, ... ,n,

1)Ji 1)JF(E i ) - fRl 1)JF(x)dF(x)

o -1 a 2 -1
(a2 - a l ) f

al
F (u)du and:l = (1,0, ... ,0)

Then, the following result is due to Jure'Ekova' (1984)

-1' -1.<
(a -a) Q*X 1)J + a (n 4) ,

2 1 - -n-n -p
(4.4)

so that by virtue of (2.2), (2.3) and the central limit theorem, we obtain that
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(4.5)

where

a2 -1 Z -1 Z
f (F (u)- 0) du +al(F (a

l
) -0) +

al
-1 Z- 6)+ (1 -aZ) ( F (aZ) - 0 )] }.

-1 2
(1- aZ)(F (a2)- 8)

(4.6)

In this context, we may note that only the estimator of the intercept S may be
o

asymptotically biased; the others are all asymptotically unbiased. If, in particular,

F is sy~metric and we choose a
Z

= 1 - a
l

then 8 = 0, so that asymptotic unbiasedness

will be achieved for all the p+l components of the UTLSE. It also follows from

Jure~kova (1984) that irrespective of H
O

being true or not,

s~ ~ 02(F,a
l

,a
Z
)' in probability, as n ~ 00 (4.7)

(4.8)~ 00§Z :F 0 ), as nwhenever

we immediately conclude that for any fixedby (4.5)] ,

, -1
( §Z)9ZZ.l( ~2) ( > 0,

to §Z [ ensured

n-l£~ y

Looking back at (Z.lO), (2.Z), (4.7) and the stochastic convergence of ~nZ(al,aZ)

p
~Z E R Z

while, by (4.5), (Z.lO), (4.7) and the Cochran theorem on quadratic forms in (asym-

ptotically) normal vectors, we conclude

£~ ~ 2
that -- R;""Xp

, so -+ ""- n,E
Z Z

where Xq,E is the upper 100E% point of

that under HO: ~Z = 0

Z
X ; as n ~ 00 ( 4 •9)

PZ,E

the central chi square d.f. with q degrees

of freedom (DF). From (4.8) and (4.9), we readily conclude that the test based on

.cn
2

in (Z.lO) is consistent against any ~Z:F ~ . We denote by H
q

(x;6) the noncentral

chi square d.f. with q DF and noncenrtrality parameter ~ , x E R+ • Then, by virtue

of (Z.lO), (4.5), (4.7) and the Cochran theorem, we obtain that

lim P{.(Z <
n~ n x I H }

n
= H (x;t.)

Pz
+, x E R (4.10)

where

(4.11)

Other distributional results will be presented in the next section.

5. ADR RESULTS FOR THE TLSE

In the sequel, we shall take a
l

= l-a
Z

=a : 0 < a<~, and assume that F is

symmetric about 0, so that 8 ,defined by (4.3) is equal to O. Also, to simplify

notations, instead of (a1,a
Z
)' we shall use a , in the statistics as well as in



(4.6) and elsewhere. Then, we have the following

(5.2)

(5.1)

THEOREM 5.1. Under the assumed regularity conditions ~ the following holds:

Yo 2 *
(i) limn~p{n2(~ln(a)- ~l) ~ ~ I Hn } G

pl
(~; ~,a (F,a)·gll ),

1/ * -1 2 *
(ii) limn~ p{n'2(~ln(a) - ~1)~ ~ IHn } = G

pl
(~+ 911912~2;~,a (F,a)911.2 ),

12 PT I 2 -1 2 *(iii) lim P{n (L (a) - 61) ~ x H } = H (X ;6)G (x+Q12Q22A2;0,a (F,a)Ql1 2)
n~ -In - - n P2 P2,E Pl - - - - - -.

* *-1 2 * 2 *
+ JE(A ) Gp (~-g12g22 ~;~,a (F,a)911.2)dGp (:; ~,a (F,a)922 ), (5.3)
212

where

(5.4)

and G (x; )..1, l:) stands for the q-variate normal d. f. with mean vector )..1 and
q -

dispersion matrix l:

Note that (5.1) follows directly from (4.5), while (5.2) follows from the asymp-

totic representation theorem for TLSE [ viz., Jureckova (1984)]. The rest of the

proof of this theorem is quite similar to that of Saleh and Sen (1987) [ dealing

with the ordinary LSE ], and hence, th~ d~tails,are o.m~~ted. Moreover, using (4.5)

and virtually repeating the proof,of Theorem 3.2 of Saleh and Sen (1987), we

arrive at the following. , ..',;' ,.;

THEOREM 5.2. Under the same

Yo S * ~
n 2( ~ln (a) - ~l ) .-,>

where

(5.5)

U/"V}( (0,
2 * *' * ' -1a (F,a)Q ) and Q = ( 91 , 92

) Q . (5.6)
- ~-ti -

Now, Theorems 5.1 and 5.2 provide the details for the first two steps in (3.3)

and (3.4), so that we may then use (3.5) to compute the desired ADR results. Note

that by definition in (3.5) and Theorem 5.1,

(5.7)* -1as Q = Q ],-11 -11. 2
P2

Thus, the UTLSE has a constant ADR over ~2 (in any compact subspace in R ) •

In a similar manner, we obtain that

* * 2 -1'
P (~l (a) '~1'~2'9 ) = a (F,a)Tr(911 .2911) + (~2~2) , (5.8)

where



Also,

M
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( 5.9)

* 2' 2 2
p (~PIT(a) ,Bl ,A2 ,Q) = PIa (F,a)+ (A2MA 2) [2H +2(X ;~)-H +4(X ~;6)]

- - - - - -- P2 P2,t: P2 P2'~
2 2 -1 }

-a (F,a) HP2+2(XP2'E:;~){Pl - Tr(91l.29l1 ) , (5.10)

where 6 is defined by (4.11). Finally, from Theorem 5.2 and (3.5), we obtain that

where

-4
cTr(M*)E(X +2(6»

- P2
(5.11)

•

and

-!z -!z
M* = Q MQ

-22.1--22.1
2

X (~) has the d.f. H (x;~).
q q

X-2r(~) = { 2(~)}-rq Xq ,

The derivations of these results

(5.12)

[ given the two

theorems on thier asymptotic distributions ] are very similar to the case of the

usual LSE, treated in detail in Saleh and Sen (1987), and hence, we omit these

details here.

Having obtained these ADR results, our next task is to compare the estimators

UTLSE, RTLSE, PTTLSE and STLSE ~'int:be ,light, of . their ADR. This picture is also very

much similar to the case of the classical L5E ; the only difference is that the

usual variance a
2

(F) of the: d.L F is replac~d,:here by a
2

(F,a). Thus, the relative

e-

picture of (5.7) and (5.8) remains the same as in the case of the L5E, excepting

that there the noncentrality parameter had a divisor a2
(F) , where as here we have

a
2
(F,a). It follows from Bickel and Lehmann (1975 ) that ifl\ stands for the class

of symmetric (absolutely continuous)distributions on R
l

, then for a E:[O.05,O.10],F(~ JI)
a2(F)/a2(F,a) is bounded from below by (1-2a)2, whereas the upper bound can be

indefinitely large. Since we have for our TLSE,

-1 -1 -1' 2
(5.8)/(5.7) = PI Tr(9ll.29l l) + PI (~2~~2)/a (F,a) (5.13)

we conclude that the smaller is the value of a(F,a) compared to a(F), the larger

is the second term on the right hand side of (5.13) [compared to the case of the

L5E ]. so that the faster will be the increase of the relative risk of the RTLSE

( with respect to the UTL5E ). This explains the lack of robustness ( in terms of

the ADR ) of the RTLSE with small departures from the pivot; the picture may even



11

be worse when the UTLSE is more efficient than the ordinary LSE. At the pivot, of

course, the RTLSE is generally better than the UTLSE ( unless 311 .2 = 311 ' i.e.,

312 is a null matrix). Thus, though the TLSE may be preferred on the ground of

efficiency and robustness against heavy tailed distributions, in this greater

domain, the RTLSE may not turn out to be a good competitor of the UTLSE , although

none dominates the other in the light of their ADR. If we compare the PTTLSE with

the UTLSE, we get a picture similar to the case of the usual LSE [ viz., Saleh and

Sen (1987)] with the only change that in the expression for the ADR (and ~ ), we

have a
2

(F,a) instead of a
2

(F). Thus, here also, at the pivot, the PTTLSE has usually

a smaller ADR than the UTLSE ( larger ADR than the RTLSE), the relative ADR first

increases as ~2 moves away from 0 , then after attaining a maximum ( greater than

1 ) , it continues to stay above the line 1 and approaches the upper asymptote 1

as II ~211 -+
00 Thus, the PTTLSE does not have an unbounded ADR ( like the RiLSE)

E(X-Z(O»
q

(5.11) is

although it does not dominate the RTL5E or the UTLSE; The picture of the ADR of

the PTTLSE reveals a lot of robustness '·:asp~c.t, ':"arid it'on1:y requires that 312 is

non-null.

For the ADR of the STL5E, we -have :'so· far taken tne shrinkage factor c to be

arbitrary. Let us comment on this choice, so that the STLSE has some good ADR

properties. If we compute (5.11) at the pivot (i. e. ," ~2 = ~ ), we obtain that it

-Z -4
would be smaller than (5.7) if ZE(X +Z (0):) > cE(X +Z (0». Now , we know that

PZ Pz
(q_Z)-l and E(X-4

(0» = {(q_Z)~q_4)}-1. Thus, in order that at A - 0q -Z - ,

smaller than (5.7), we need that 0 < c < Z(PZ-Z) ( which in turn demands

that Pz > Z ). However, this simple condition on c may not be enough to ensure

the asymptotic dominance of the STLSE over UTLSE. Towards this, we define

-1 -1
91232Z9213n

o 0
and h = chl(~ )/Tr(~) (5.14)

o
so that 0 < h < 1. Note that if 91Z is of rank 1, then chl(~) > 0, but the other

characteristic roots are all equal to 0, so that h = 1. Then proceeding as in the

case of the usual LSE [ viz., Saleh and Sen (1987) ], we conclude that in the light

of the ADR, the STLSE dominates the UTLSE if the following Condition holds :



12

o < C < 2(pZ - 2) and h(c+4) < 2. (5.15)

In order that c satisfies both the inequalities ( and is positive), we need that

h < l/Z , which in turn, requires that MO has rank at least equal to 3 ( i.e.,

..
(5.17)

(5.16)

by computing the

min( PI' PZ) ;

-1
or 1 - Chpz(~ZZ.lSZZ) ]

may directly be verified

both Pl and Pz are greater than Z ). Actually, we may note that

o -1 -1 -1
Tr(M) Tr(9zz9z19l19l z) = Tr(9zz[ 9zz - 9ZZ.1])

-1
Tr(!Pl 911911.Z) < p*

o -1
chI (k; ) = 1 - chp (~ll. Zqll) [

1
so that the condition that h < liZ

characteristic roots of 9~~911.Z ( or of 9;;9zz.1 ). In any case, for this STLSE

to dominate the UTLSE (in the light of their ADR), we need that p* ~ 3, and more-

over, h to be less than liZ. Compared to the case of the PTTLSE, here the conditions

on PI' Pz and h are more restrictive, and there may be some cases where the PTTLSE

works out very conveniently, while the STLSE may fail to yield any dominance result.

Actually, comparing (5.10) and (5.11), we may remark that even if (5.15) holds, at

the pivot A = 0 , (5.11) is generally larger than (5.10) [unless, E, the significa~_Z _

nee level of the preliminary test ori the Pivo't," is large], so that the STLSE may

not generally dominate the PTTLS'E:. However··~-:''t"Ke STLSE , under (5.15), is asymptoti

cally minimax (in the light of the ADR), while the PTTLSE is not so. Thus, in making

a choice between the PTTLSE and STLSE, we need to take into account the design

matrix Q, the specific values of PI and Pz ' and the asymptotic minimax considerati

ons. Categorically, we may not be able to advocate the use of either one of them

in all cases, although both of them fare well comared to the UTLSE and RTLSE. In

this context, we may remark that the smaller is the ratio aZ(F,a)/az(F) , the

lesser will be the relative gain in the improvent due to PTE or shrinkage in the

case of the TLSE over the case of the ordinary LSE. Thus, in one hand, in order to

achieve more robustness and efficiency, one may use the TLSE instead of the LSE

(in linear models) , but in that case, the relative improvement in (5.10) or (5.11)

over (5.7) may be smaller compared to the case of the LSE.

For improved estimation of the mean vector of a multivariate normal distribution
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with known or unknown dispersion matrix, a modification of the Stein-rule estimator

( called the positive-rule estimator (PRE» has been considered, and this PRE has

usually a smaller risk than the Stein-rule estimator. Tempted by this, we are natu-

rally led to consider a PRE version of (2.16). We define a positive rule TLSE (PRTLSE)

under a Mahalanobis distance type loss function ] as

(5.18)

(5.19)

where
r-2 + (.-2

(l-c"'n) =max{O,l-c ...... n },

and the other notations are all adapted from Section 2. This PRTLSE differs from

the STLSE only on the set where r 2
< c , and in this sense, the PRTLSE overshrinks.... n

the estimator towards the RTLSE. By virtue of the asymptotic representation in (4.4) ,

we are able to reduce this problem in an asymptotic setup to the standard multi-

normal case where the existing results viz., Corollary 5.3.1 of Anderson (1984)]

can be readily used to show that under {H } in (3.3) and the assumed regularity
n

conditions, the ADR of the PRTLSE in (5.1.8):: is~.~~l,~e,~" t??n that of the STLSE when

(5.15) holds. Thus, the PRTLSE dominates the STLSE in the light of their ADR.
", _ '.'. ,.,. .'H q c.:: ~ ",

However, in this context, it may be r~~ark~d t;?~t (,s.le) m.ay not agree with (2.12)

even if we let c = £n,€ ' and generally, for small values of € , the PRTLSE may

not dominate the PTTLSE. Moreover, if instead of the simplified form in (2.16), we

take an arbitrary quadratic loss and define the Stein-rule estimator as in (2.14),

then the corresponding positive-rule v~r~ion may not generally enjoy this small

ADR property (over (2.14».However, given that in lin~ar mO'dels, this Maha1anobis

type loss function is quite appropriate, we are naturally to advocate the use of

the PRTLSE instead of the STLSE.
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