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Abstract

It is argued that it is feasible to estimate the extent of distortion of a distorted image before
attempting to reconstruct the image. One might choose to use such an estimate to help one
decide whether a reconstruction should be attempted. Or the estimate might reasonably influence
the method of reconstruction chosen. A general model is described under which a consistent
estimator is obtainable. A proof of consistency is given, and the methodology is used on an
intentionally distorted natural language text. The methods, which are primarily algebraic, are
loosely motivated by an established method of encryption.
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L IITI.ODUCTIOI .lID SUlOllI.Y. Consider a complex structure such as a written text, a visual image or

human speech, that has been subjected to a certain amount of distortion in the process of

communication. The problem under consideration is that of quantifying and estimating the level of

distortion. While the issue of reconstruction has properly commanded considerable attention in recent

years, the problem of quantitatively assessing the distortion appears to have been neglected. Such an

assessment could have a bearing on how, or whether, a reconstruction should be attempted. This

presumes, as we do here, that it is feasible to estimate the distortion without simultaneously attempting

a reconstruction.

While the problem of estimating distortion might reasonably be approached from the perspective of

entropy, we will, instead, exploit an interesting algebraic structure associated with a secure method of

encryption - one commonly used for communicating with embassies. Because of this connection, and

mainly because of an easy access to computer files with various kinds of written text, this paper will

emphasize distortion of natural language texts. However, it seem likely that the methodology developed

here will be most useful in other settings, wherever distortion is a serious problem.

Let Xl' X2, ••• denote a natural language text, called "plaintext", which, for convenience, has been e
converted to a binary format - zeros and ones. It is customary to refer to the original uncoded text

(commonly in the Roman alphabet) as the "plaintext". We shall call the X sequence, when clarity

requires, the "plaintext sequence". Further, let YI' Y2' ••• be a sequence of independent Bernoulli

random variables with a common mean p, and form a new sequence Zl' Z2' ••• by addition modulo

two:

(1)

A completely secure encryption is obtained by using p = i. This causes the Z sequence, which can be

transmitted through an unprotected channel, to be iid Bernoulli random variables with mean one-half,

i.e., pure noise. Careful security is required for the Y sequence, the "key". For, with it, the original

message is easily recovered:
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Xi =(Zi + Y i) mod 2, i =1,2, •••. (2)

The Y sequence will be used to model distortion. The Bernoulli parameter p is assumed to be

unknown. The effects of various distortion levels on a well-known quotation are illustrated in Table 1.

p Distortion of Quotation p Distortion of

.00 BEVAIE THE IDES OF IAICH. . 10 BEYDIE THE BDET

.01 BEVAlE THE IDES OF IAlCH. .20 NIVAQE TDE ILPS
•02 BGUlE,THE IDES OF IAlCE. .30 YI IBUTU .IG?CY
.03 BEVAIE'THE IDES OF IGTCHY .40 NQ?PJN?IECJJU.E
.05 BAiAlG THE IDES PE,IAICH. .50 ,LlB.QBLIOBF VV

Quotation

OHPJAICG •
IIZIIYVDDU
PIQIPATGS .
T"IIBDlBZY
BICZUBDII

Table 1: Distortions of a Widely Known Quotations

Each of the 26 letters of the alphabet, together with five punctuation marks and the delimiter

between words (a "space"), is assigned a different five-bit code. Each bit is reversed with probability p.

The extent of the distortion is best viewed in terms of the distance of p from one-half. Clearly, p =

o represents no distortion; p = 1 represents a complete but '1I.tematic distortion which is equivalent to

recoding the X sequence, with ones and zeros reversed, and replacing p = 1 by p = O. By such reason-

ing, we are lead to view the values of p and 1-p as yielding equivalent amounts of distortion. A simple

defmition of didortion, which reflects this viewpoint, the one we shall use, is provided by the notion of

entropy (see, for instance, Billingsley (1965), page 60):

(3)

So distortion is a real valued parameter (J in the interval [0,1] with zero representing no distortion and

one representing pure noise. It is the amount of entropy imposed on each bit of the plaintext sequence.

There is no way to estimate () without coming to grips with the plaintext sequence Xl' X2, ••• ; it

must be modelled in lome luitable way. To view it merely as a "nuisance parameterII il to render the

task of estimating () hopeless.
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A tempting simple approach is unsatisfactory. If one assumes the elements of the plaintext sequence

are iid Bernoulli random variables - an unrealistic assumption - one can obtain, asymptotically, an

inequality for 9, but cannot obtain a consistent sequence of estimators. A contention of this paper is that

there is a reasonable nonstochastic description of the plaintext sequence which does permit a consistent

estimation of 9. Simulation studies, described in Section 3, evidence this with a real plaintext.

For a fIXed positive integer value m, form a "grouped plaintext sequence" of "words" of length m:

(4)

Likewise, form grouped sequences of length-m words using the Y and Z sequences: y l' Y2' ••• and Z l'

12' The latter will be referred to as the "(grouped) di,torted sequence."

Let Gm, with addition symbol "e", denote the group of length-m vectors whose components are

leros and ones. Group addition means component-wise addition modulo 2. The (lower case) x's, y's

and I'S assume values in this group, and satisfy

(5)

The identity element is the vector of m leros, e = (0,0,· •• ,0). Below, En(x) and Fn(l) are functions

on Gm, the empirical distributions of Xl' ••• , xn and 1 1, ••• , In' respectively. Notice that, for each

fIXed n, the function min{En(x): x E Gm} is nonincreasing in m.

We are now ready to describe a workable model for the plaintext sequence. Only one assumption is

needed:

The Basic Assumption: For .ome po,itive integer m, min{En(x): x E Gm} ~ ° a, n ~ ID.

Clearly, when min{En(x): x e Gm} ~ ° holds for some m, it holds for all larger m. The smallest

such index m will be called the complezitJ indez of the plaintext sequence.

We believe the basic assumption is reasonable. This is evidenced in Section 3 with the use of a Latin

text that is well modelled with a complexity index of nine. We suspect that small complexity indices will
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adequately model many other complex structures that are subject to distortion.

For any two real-valued functions f and g defmed on Gm, let "!*g" denote the convolution: !*g(x) =

E
1EGm

f(1)g(x • I), X E Gm. Further, let ')'(x) denote the number of ones in the vector x, x E Gm.

Clearly, 0 ~ 7(X) ~ m, and ')'(e) = O. Finally, let

(6)

which is the probability that Yi = y, y E Gm' i ~ 1. The empirical distribution Fn(l) for the distorted

partial sequence 11' 12' ••• , In behaves, asymptotically, like the convolution En*P(iP)(I). Specifically,

the latter is the expected value of Fn(l) (Lemma 1 below), and the difference Fn(l) - En*P(iP)(Z) goes

to lero with probability one as n -. ai, a consequence of Kolmogorov's strong law of large numbers

(Lemma 2 below).

The empirical distribution Fn(I), which describes a portion of the distorted text, is something that

can be observed. The empirical distribution En(x) for the undistorted text can not. If it could be

observed, it would be an easy matter to obtain a consistent estimator of p and, hence, of e. To see this,

consider the function

(7)

which is defmed unless p = ,. It can be checked (see Lemma 4 below), that the convolution

P(iP)*Q(iP) is the identity function l{e}' i.e., P(;P)*Q(iP)(X) = 1 if x = e, and it is zero otherwise.

This is extremely useful. For then, En*P(iP)*Q(iP) = En' It follows that En(x) and the convolution

Fn*Q(iP)(X) are asymptotically equivalent. Specifically, the difference Fn*Q(iP)(X) - En(x) converges

to sero with probability one as n -. ai, X E Gm. Thus, if En were known, one should be able to obtain a

consistent sequence of estimators of p by solving the equation Fn*Q(iP)(X) = En(x) for p, using some

suitable x E Gm.
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The assumption that En(x) is known, upon which the previous paragraph builds, is untenable in

practice. Nevertheless, one can show that {en =-Pn -log2Pn -{1-Pn) -log2(I-Pn)' n ~ I} is a consis­

tent sequence of estimates for e, where Pn is chosen to make min{Fn*Q(jPn)(x): x E Gm} = 0 (which

is the limit of min{En(x): x E Gm} as n ... III), n ~ 1. The theory behind this is discussed in Section 2,

and applications to various distorted plaintexts are discussed in Section 3.

2. THEOI.Y. Here, the notation and concepts introduced in Section 1 are assumed. Our main result is:

THEOI.EJ(. Let Pn E [O,;)U(;,I] f)e Aroot o/the eqUAtion min{Fn*Q(jp)(x): x E Gm} = 0, or let it f)e;

the complezitJl indez doe' not ezceed m, On i, A .tronglJl con,iltent eltimAtor 0/ the diltortion indez O.

The proof of this result depends on several lemmas, which we will discuss first.

LEIOU 1. The empiricAl di,trif)ution Fn for 11, - - -, In hA' ezpectAtion ~Fn = En*P(jp).

PI.OOF. The expectation of the indicator 1{1}(li) is equal to

(see (5». Thus, the expectation of Fn(l) is:

n n n
~Fo(l) = ~ E P(Xiez;P) = ~.E E EG 1{ }(Xi)(xeZiP) = E EG {~.E 1{ }(Xi)}p(XeZiP) = En*P(Zjp). 0

i=l 1=1 x m x x m 1=1 x

LEIOU 2. The difference Fo(.z) - ~Fn(l) ... 0 with prof)dilitJl one A' n'" III, I E Gm.

PI.OOF. Write Fn(.z) - 'Fn(l) as n-1E~",lui' where ui = 1{1}(li) - P(xieZiP). (See the proof of

Lemma 1.) Because of the way the Ii's are defined (cf. (4», ur and Us are dependent unless Is - rl ~

m. So split n-1E~.lui up into m parts as n-1Ej=lVnj' where Vnj is the' sum of the ui with i of the

form j + mk for some nonnegative integer k, 1 ~ i ~ n. It is easy to show, with Kolmogorov'sstrong law

of large numbers (see page 165 of Stout (1974», that n-1vnj'" 0 almost surely as n'" III, 1 ~ j ~ m.
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(Each ui has mean zero and a variance bounded by one.) D

•

It will prove convenient, now, to extend the definition of P(Yjp), given in (6), to negative values of Pj

no modification of the formula is needed.

LEIDU. 3. For eAch reAl p And q, P(jP)*P(jq) = P(jp+q-2pq).

PI.OOF. For flXed x and y in Gm, let j be the number of components of these vectors which are both one.

It is easily seen that j = ('}'(x) + '}'(y) - '}'(x$y»/2. Also, for a fixed x and integer i, 0 ~ i ~ m, the

number of y in Gm for which 'rty) = i, and for which a particular value j is attained, is

['rtj)] [mi~x)], (a simple lIurn calculation ll
). It follows, for each flXe~ x in Gm, that

P(jp)*P(jq)(x) = EyEGmP(Yjp)P(xeyjq)

_ E '}'(y)(l- )m-'}'(y) 'rtxeY)(1 )m-'rtxey)
- yEG

m
P P q -q

_ E E i(l )m-i '}'(x$y)(l )m-'}'(xey)
- i=O {y: 'rty)=i} p -p q -q

= E E ['Y(~)] [m~'Y~x)] i(l )m-i '}'(x)+i-2j(1 )m-'rtx)-i+2j
i =0 j =0 J I-J P -p q -q

= .E {['}'(~)] (p(l-q»j(q(l-p»'}'(x)-j.E [m~~x)] (pq)i-j«l_p)(l-q»m-'}'(x)-{i-j)}
J =0 J 1=0 I-J

= (p+q-2pq) '}'(x)(I-{p+q_2pq)m-'}'(x) = P(xjp+q-2pq). D

With the simple observation Q(jq) = P(j~), q # i, Lemma 3 immediately yields:

LEIDU. 4. For q # i, Q(jq)*P(jp) = P(if-'iij). Th1U Q(jP)*P(iP) = P(jO) = I{e} when p # i·

In the opposite direction, one can easily see that P(jp) = Q(jl:jp) when p # i.

LEIDU. S. For Anr noncon,tAnt junction f on Gm, the junction h(p):= min{f*Q(jp)(x): x E Gm},

p E [O,i), i, ,trictlr decreA,ing And continuou" And it, rAnge iI (- lIl,min{f(x): x E Gm}l. (If the

domAin of the junction h i, eztended to the interval (i,ll, it i, eA,ily ,een thAt h(p) = h(l-p), p E

<i,l]. If f were conltAnt on Gm with common VAlue c, then h(p) = c for All p.)

PI.OOF. The continuity of h is inherited from the continuity of the functions Q(i· )(x), x E Gm.
I

For fIXed p and pi, 0 ~ P < pi < i, let q =~ E (O,i), so that, according to Lemma 4, Q(jp)

= P(jq)*Q(jP '). Then, because the P(Zjq)'s are nonnegative and add to unity,
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f*Q(jp)(x) = P(jq)*f*Q(jP')(x) = E1EGmP(ljq)·f*Q(jP')(xez)

~ min{f*Q(jp')(xl9z): I E Om} = h(p'),
(8)

for each x E Om' So h(p') ~ min{f*Q(jp)(x): x E Om} = h(p). Clearly, h(p) is strictly greater than

h(p') if the inequality in (8) is always strict. If, on the contrary, it is an equality for some x E Om'

then the function f*Q(jP')( •) is constant, since the P(ljq)'s are, in fact, strictly positive. It would

then follow that the function f*Q(jp)(.) (= P(jq)*f*Q(jP')(·» is constant. Setting p = 0, leads to

the contradiction that f is constant. Thus h is strictly decreasing on [0,;). It remains to show that

h(p) -t - m as p -t;. Suppose, to the contrary, that h is bounded below. Observe. that the sums of

f(x) and f*Q(jp)(x), x E Om' are equal (and finite) for each flXed p E [0,;). From this, from the

boundedness of h, and from the fact that Om is a finite set, it easily follows that max{f*Q(jp)(x): x E

Om}' p E [0,;), is bounded Above. Thus there must be a sequence {Pi} converging up to ; on which

f*Q(j. lex) converges to a finite limit, call it g(x), x E Om' Then

f(x) = f*Q(jPi)*P(iPi)(x) -t g*P(j; lex),

as i -t m, i.e., f(x) = g*P(j;)(x) for all x. But g*P(j;)(x) will be a constant function of x (follows

immediately from the fact that P(x,;) = 2~ for all x). This says that f is a constant function of x, a

•

•

contradiction. Thus, h(p) -t - m as P -t ;.

LEIOU 6. Let f be /I nonneg/ltive function on Om who,e v/llue, /ldd to unity. Then

D

min{f*Q(jq)(x): x E Om} 5 (1 - (2q)mr1(min{f(x): x E Om} - qm), 0 ~ q < ;.

Pl.oor. Observe that the function h(x):= (1 - (2q)mr1(p(Xjq) - qm), x E Om' is nonnegative and sums

to unity for q E [0,;). Thus for each y E Om'

--8-



•

..

~ ExEGmh(xey)EzEGmQ(xezjq)f(z)

=EzEGmf(z){EXEGmh(xey)Q(xeZjq)}

= (1 - (2q)mrlEZEGmf(z){1{e}(yez) _ qm}

= (1 - (2q)m) -l{f(y) _ qm}.

Since y is arbitrary, the desired conclusion follows. 0

PI.OOF OF THE THEOI.EII. The heart of the proof is contained in Le~aB 5 and 6. According to Lemma

5, if the empirical distribution function FD is not a constant, then the fUDctioD hD(p):=

min{FD*Q(jp)(x): x E Gm} is continuous and strictly decreasing on [O,l), and it has range

(-III,min{FD(x): x E Gm}]. So hn(O) ~ ° and hD(p) -t -III as p -tl So the equation hD(p) = ° has

a unique root p' in the interval [O,l). This could be the root PD referred to in the statement of the

theorem. Alternatively, there is a second root at the point 1 - p', in the interval (l,l] (see the

statement of Lemma 5), which could be the root Pn' Both pOBBibilities give rise to the same uDique

value for 0D' The case of a CODstaDt empirical functioD remains - when D is a multiple of 2m (the

cardiDality of Gm): Fn(x) = 2-m, x E Gm. In such a case, there can be no root Pn (see the statement

of Lemma 5), and, according to the statement of the theorem, Pn is set equal to i. Again, the value of

On is uDique.

It remains to show that On -t 0, with probability one, as n -t III. Let the true value of p E [0,1] be

denoted by po' The task is to show that the only limit points of {PD} are Po and 1 - Po' Since

hD(p) = hn(l-p) for all p E [O,l)U(l,l], there is no loss in generality in aBBuming that Po and the Pn

are in the interval [O,l]. Then the task becomes that of showing Pn -t Po with probability one. For

this, we shall need the fact, provided by Lemmas 1 and 2, that

•

Fn(x) = En·P(jPo) + 0(1), as n'" III, uniform in x, x E Gm,

(uniformly since Gmis a fiDite set). There are two cases to consider: Po E [O,l) and Po = i.
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If Po e [O,i}, then Fn*Q(;po)(x) = En*Q(;po)*P(;po)(x} + 0(1) = En(x) + 0(1), as n -I lIl, which

rules out the poBBibility that Fn is constant on Om infmitely often. For, by assumption, the

complexity index (defined in Section 1) does not exceed m, so that, according to the basic assumption

(appearing in Section I), min{En(x): x e Om} -I 0 as n -I 1Il. Thus min{Fn*Q(;po)(x): x e Om} -I O.

But, when Fn is constant on Om' Fn*Q(;po)(x) =2-m for all x e Om' So Fn is constant on Om

only finitely often. These occurrences can be ignored, since we are only concerned about large n: For

large n, Pn e [O,'l) and hn(Pn) =O. It remains to show for p e [O,i) and Ip - Po I ~ 6 that hn(p)

cannot be lero when n is sufficiently large (depending on 6), 6> o.

Suppose Po > 0 and 6 > 0 is small enough that Po - 6 > O. Then, for p e [O,po - ~, (9) and

an application of Lemma 4 yield

hn(p} = min{Fn*Q(;p)(x): x e Om}

=min{En*P(iPo)Q(iP)(X): x e Om} + 0(1)

= min{En*P(i ~~;:)(x): x e Om} + 0(1)

~ (~~;:)m + 0(1) ~ (6/(1-2Po»m + 0(1),

(10)

which is strictly positive for all sufficiently large n. Thus liminfn-lll) Pn ~ Po - 6.

Likewise, for p e (Po + 6,i), (9) and an application of Lemmas 4 and 6 yield P(iPo)Q(;p) =

Q(;~12 ) and
- Po

hn(p) =min{Fn*Q(jp)(x): x e Om}

=min{En*P(;Po)Q(iP)(X): x e Om} + 0(1)

=min{En*Q(i r.:~:o)(x): x e Om} + 0(1)

~ (1 - 2P-Po rl(min{E (x): x eO} - (~)m) + 0(1)
1-2po n m 1-2po

~ (1 - 2i-~:orl({min(En(x): x e Om} - (1_:po)m) + 0(1).

(11)

Since min{En(x): x e Om} -I 0 as n -I lIl, according to the basic assumption discuued in Section I, the
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latter is strictly negative for sufficiently large n. Thus limsuPn~ Pn ~ Po + 6. This complete the

argument for Po e [O,i).

Finally, suppose Po =i. Here, we do not know whether or not Fn is constant on Gm infmitely

•

•

often; it does not matter. When it is, Pn = i (according to the statement of the theorem), and Pn =

Po' When it is not, the argument shown in (10) will suffice: For'11o 6> 0, can Pn be less than i - 6

when n is sufficiently large. c

3. ApPLICi.TIOIS. Because computer files of natural language texts are readily available, it is convenient

to apply our methodology to deliberately distorted natural language texts. We shall work with Virgil's

Aeneid, in the original Latin text. The approach is to convert each of the 26 letters of the Roman

alphabet to five binary bits, in order, with decimal equivalents 0 to 25. The remaining six 5-bit

numbers, with decimal equivalents 26 to 31, are used for five punctuation marks and the delimiter

between words (a IIspacell). Each bit is changed with probability p e [O,i], where p is chosen to

correspond to a prescribed distortion parameter value (J. The Aeneid requires about 2.1 million bits. It

is well modelled with a complexity index of nine; one of the 512 possible binary bit sequences of length

•
nine never occurs, while 0.11 of the 256 binary bit sequences of length eight do occur at least once. (The

index may depend on the way we code the Roman alphabet; this iBBue has not been addressed.)

Using the methods described in Sections 1 and 2, we obtained, as shown in Table 2 below, the

estimates of (J for (J =.05, .10, ••• , 1.00.

Es t imated
Di s to r t ion

.5264

.5682

.5937

.6124

.6750

.6787

.7260

.7261

.7335

. 7 4.;..83"--_-'

,....-._-...,-----:---..,.--",,'-""'"-----:---..-
Ac tual Es t imated Ac tual

__pistortion Distortion Distortion
.05 .05~38~~-+-~ .55
.10 .1093 .60
.15 .1444 .65
.20 .1961 .70
.25 .2532 .75
.30 .2960 .80
.35 .3302 .85
.40 .3817 .90
.45 .4439 .95
.50 .4565 1_.~00~_-,,---,

..

Table 2: Estimated Distortion for Various Distortion Levels (n = 2,000,000)
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These estimates use the empirical distribution function Fn for two-million overlapping 9-bit distorted

lequences, intentional distortions of the plaintext. The estimates for (J ~ .5, appearing in the second

column, are quite respectable. The estimates for (J ~ .55, appearing in the fourth column, show a

pronounced negative bias. This occurrence of a negative bias seems to be due to fluctuations brought

about by the randomisation of bits. As one might expect, the problem of bias increases if one uses leIS

of the distorted text to estimate (J, and it occurs at smaller values of (J. (See Table 3 below.)

Bias is a greater problem than variance. To illustrate this persuasively, the two million 9-bit

lequences used to estimate a particular value of (J for Table 2 were split up into 20 equal parts and used

to make 20 (essentially independent) estimates of (J. Sample results are shown in Table 3 for ten

different values of (J.

Actual Bias Standard Dev.
~.i s tort ion (estimated) (estimated)

.10 -.0157 .0162

.20 -.0408 .0218

.30 -.0583 .0255

.40 -.0859 .0212

.50 -.1123 .0311

.60 -.1539 .0312

.70 -.2127 .0293

.80 -,2718 .0213

.90 -.3589 .0258
1.00 -.4536 .0221

~.

Table 3: Bias and Standard Deviation of the Estimator
(20 cases with n = 100,000)

As the table shows, the standard deviation of the estimator of (J stays fairly constant and relatively

small while the bias grows increasingly negative - to a disturbing size - as (J approaches one.

The relative smallness of the standard deviation offers some hope that accurate estimates of bias can

be found. When used, these should result in accurate, moderate-sample-size, estimates of distortion.

Besides helping with the bias, a IIsecond order theoryll, would probably point the way to a useful central

limit theorem.

It is perhaps worth emphasising that huge values of n can be expected with distorted visual images,

and probably in most contexts. I.e., large sets of binary bits can be anticipated. So accurately
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..

•

estimatiDg distortioD should be feasible for a wide variety of settiDgs.

A questioD of cODsiderable importance remaiDs: How does ODe determiDe the complexity iDdex?

This index must either be inferred from experieDce or be inferred from the distorted image itself. We

believe the latter may be possible.

The reasoD for such optimism is that (i) the estimators 0D cODverge to the correct limit 0 wheD the

complexity iDdex does not exceed m (see the theorem of SectioD 2), and (ii) the differeDce On - °has to

have a strictly positive limit poiDt when the complexity iDdex exceeds m (a CODsequence mainly of

Lemma 5). Negative limit poiDts are impossible. Moreover, a limit point at zero is ruled out uDless

min{En(x): x e 0ml, D ~ I, has a limit poiDt at zero. (The latter WOD't CODverge to zero wheD the iDdex

exceeds m.) By experimenting with several values of m, it should be possible to distinguish between

cases (i) and (ii), when D is large, and correctly estimate the true value of the complexity index. This

agenda should be easier to implement when the issue of bias, discussed above, is better uDderstood.
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