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and Carleton University, Ottawa, Canada

ABSTRACT. Pitman estimators of location are unbiased, translation-equivariant and possess some

optimality properties under quadratic loss. Similar optimality properties of Pitman estimators are

studied with respect to the measure of Pitman closeness of estimators.

1. INTRODUCTION

Let ~1' ... , ~n be n independent and identically distributed (LLd.) random vectors (r.v.) with a

probability density function (pdf) f(~; ~). In a (multivariate) location model, we set

(1.1)

for some p ~ 1, where the form of f(·) is assumed to be known. The joint density (Le., likelihood)

function of~, ... , ~n is given by

Then the Pitman estimator [Pitman (1939)] of ~ is defined as

• -1
~P n = {f ... f en(~)d~} f· .. f ~en(~)d~ .,

AMS (1980) Subject Classifications: 62 C15, 62 H12

(1.2)

(1.3)

Keywords: Asymptotic representations; Bayes estimator; equivariance; median unbiasednessj MLE;

optimality; qudratic loss; shrinkage estimator.
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For the location model in (1.1), the Pitman estimator (PE) ~P n is translation-equivariant and is,
unbiased for~. Also, within the class of equivariant estimators, under a quadratic loss, ~P n has,
minimal risk. Moreover, for p=1 (i.e., e c R), iJ p n is minimax with respect to quadratic loss, and it,
is admissible under additional conditions. In fact, if we define the posterior density of ~ (with respect

to the uniform weight function) by

then by (1.3) and (1.4), we have

(1.4)

~p,n = J ... J ~g(~)d~ = E{~1~1' ..., ~n} , (1.5)

so that ~P n is the Bayes estimator of.~ with respect to the uniform weight function. A quadratic loss,
L(T, ~) = 111' - ~1I2(ora more ·genm-a.L form ,liT - ~II~ = (1' - ~)'\.Y(T - ~), for some positive

definite (p.d.) \.Y) dominates the ;scel1ano in this respect.

Another brilliant' idea dofilcomparing; two' rival estimators (say, 1'1 and 1'2) of a common

parameter ~, due to PitIl\lanl(llU'l),ds the Pitman closeness criterion (PCC): 1'1 is closer to ~ than

1'2' in the Pitman sense,if ., .w~ I'; ~ ;;~.;....,. OJ

't/ ~ E e, (1.6)

with strict inequality holding for some~. The Euclidean norm 11·11 may be replaced by a more general

norm L(·,·), and the cotresponding criterioIl is. then termed a generalized Pitman closeness criterion

(GPCC). Since, in general, l'1 ~'T2 may have a positive probability mass at Q, a somewhat different

conclusion may evolve if in(1.6), [111'1 - ~II $ 111'2 - ~1Il is replaced by [111'1 - ~II < 111'2 - ~1Il.

This drawback may readily be eliminated by replacing (1.6) by the following:

1'1 is closer to ~ than l'2 in the sense of the GPCC, if

(1.7)

with strict inequality holding for some~. If (1.7) holds for all 1'2 belonging to a class e, then 1'1 is

the Pitman closest estimator of ~, with respect to the loss function L(·,·). Note that while comparing

estimators with respect to a squared error (or quadratic loss) criterion, we need to confine ourselves to
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a class of estimators for which E~L(T, ~) exists, for all ~ E 6. In this respect, the GPCC entails less

restrictive conditions. However, verification of (1.7) for every T 2 E e may be, in general, quite

difficult, and that is the main reason, why inspite of having some advantages (over the classical

quadratic loss), the GPCC did not gain due popularity over the years. Another drawback of the

GPCC is the possible lack of transitivity which generally holds for quadratic error losses; we may refer

to Blyth (1972) for some nice discussion. Nevertheless, the recent developments in the general area of

GPCC have opened up a broad avenue of idea tracks, and it is quite natural to inquire about the

performance of various estimators in the light of the GPCC. Recent works of Ghosh and Sen (1989)

and Nayak (1990) playa very important role in this context. We may also refer to Sen (1990) for a

broad review of GPCC in various contexts.

Since the estimator in (1.3) and the GPCC in (1.6) - (1.7) were both sparked by Pitman (1937,

1939), it is quite natural to study how the Pitman estimator performs in light of GPCC. The present

study solely relates to this issue. In Section 2, we consider ~he:'Qne-parameter location model and

discuss the Pitman closest characterizations of Pitman!, estimatotS'.: 'In this study, the recent results of

Ghosh and Sen (1989) and Nayak (1990) are incorporated in ·cll.araterizing··suitable conditions under

which Pitman estimators are Pitman closest ones.. :' Section 31ld",aJ.s.')Wi!thltRe multi-parameter case.

Since Pitman estimators are not, in general, admissibl!dunder qUadra;ticHoss~andare deominated by

Stein-rule or shrinkage estimators, incorporating the recent results of Sen, Kubokawa and Saleh (1989),

further characterizations of GPC of Pitman estimators are investigated. The concluding section deals

with the asymptotic case. In this setup, the location,iiiP.<t~I/.~ f1.n:~h,ektended to a more general
~. .~

setup, and some non-regular cases are also treated along with.

I '

2. ONE PARAMETER LOCATION MODEL: GP(YOFPE.

For the location model in (1.1), we have already remarked, that the PE 0P,n in (1.3) is a

translation-equivariant, unbiased estimator of O. Moreover, if an uniformly minimum variance

unbiased (UMVU) estimator of 0 exists, then it is identical with the Pitman estimator of 0 (although

such UMVU estimators may not always exist). However, within the class of equivariant estimators,

0P,n has the minimal risk under squared error loss. Further, 0P,n has the minimax (risk) property

(under quadratic loss), in the sense that

2 • 2
supEo(Tn - 0) ~ supEO(Op n - 0), V Tn .
00'
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Moreover, if f(·) is a normal pdf, UP,n coincides with the sample mean Xn ( = ft Ei=lXi) (which is

the maximumn likelihood estimator (MLE) of the normal mean), and hence, Op is admissible (under,n
quadratic error loss); see Blyth (1951). However, for a non-normal f(.), 0P,n is generally different from

Xn or the corresponding MLE of 0, and is, often, computationally very cumbersome. Nevertheless, the

Bayes interpretation in (1.5) remains in tact. In all of these characterizations, quadratic loss plays a

vital role.

It was observed by Ghosh and Sen (1989) that in the characterization of Pitman closeness of

estimators of 0, sufficiency and median unbiasedness playa vital role. Recall that an estimator T is

median unbiased for 0 if

PO{T ::; O} = PO{T ~ O}, 'V 0 E e . (2.2)

Also, note that if T is a sufficient statistic for the estimation of 0, then defining en(O) as in (1.2), we

have, by the factorization theroem,
>

. en(O) = hn(T, 0) eri(X1, ... , Xn), 0 E e ,
Ie: '.J fl"

(2.3)

* ' '-',~. 'I; (\':C i 'J.' ,':", ~F'

where en(·) does not depend on 0 and the pdf hp(T, 0) depends on Xl' ... , Xn only through T. As
,} '. )"t.>! L _, 1~ \ ;; ~ , :,',

such, by (1.4) and (2.3), we obtain that g(O) = ~n(T, 0)/Jhn(T, O)dO, 0 E e, so that by (1.5),
\: ~ :.; \ .i 1.; '" :.1 .~' • .J.' i', C, iii', i, -il ,.

jtj <~: ru..;.:'y': 11~i j;\' ("if;,J ',:','; ..

Op n= fOlln(T, O)dOjJhn(T, O)dO
'!, i '_,~:T .. ::., O,! .j

= tPn(T) = a function of the sufficient statsitic T

= a sufficient statistic itself. (2.4)

This feature of Up n along with its unbiasedness make it possible to use the classical Rao-Blackwell,
theorem to clinch its minimal risk property (under a quadratic error or a suitable covex loss). The

sufficiency and unbiased~ess of Up n may not, however, suffice for its Pitman closest characterization.. ,
In this context, we may refer to Theorem 1 of Ghosh and Sen (1989) which provides the desired

characterization. Let ebe the class of all estimators of the form Un = Op + Zn where (i) Up and. ,n ,n
Zn are independently distributed, and (ii) Up is median unbiased for O. Then, note that,n
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P O{IOP,n - 0\ < IUn - 01} - Po{IOP,n - 01 > IUn - oil

- 2 • 2
= Po{2Zn(Op n - 0) + Zn > O} - P0{2Zn(Op n - 0) + Zn < O}, ,

• 1 - 1
= PO{OP,n - 0 > -2Zn , Zn > O} + PO{OP,n - 0 < -2Zn, Zn < O}

. 1 . 1
- PO{OP,n - 0 < -2Zn, Zn > O} - PO{OP,n - 0 > -2Zn, Zn < O}

~ 0, by (i) and (ii). (2.5)

Note that (i) holds whenever Zn is ancillary, and equivariance considerations often lead to the

estimators of the type Un. However, (i) and (ii) are sufficient, not necessary. Looking at the

penultimate step in (2.5), we may observe that if the conditional distribution of Op n' given Zn, has,
median 0 (a.e. Zn), then (2.5) is nonnegative. This property, we may term the uniform conditional

median unbiasedness. Since

(2.6)

this uniform conditional median unbiasedness implies the usuaf '~edi~n'unbiasedness, but the converse

may not be true. Under (i), however, (ii) ensures uniform c~nditional median unbiasedness.
I, ,~L '. " \',;L;· \' <c ~_,:

Considerations of minimal sufficiency and maximal 'invariants often lead us to consider the class of
;' i:': ~._:~: 'I~rf,: J:[.'·--,\i~l

estimators e, where Zn depends only on the maximal invariants. In this setup, the distributional

independence of 0P,n and Zn holds. So, we need to verif~~h~~}:ffIQ i~median unbiased for o. In the
... '-', ',l • j ';...• .' .... I, ._-- f' ,-;

location model, given that Op n is unbiased for 0, we need ~o verify,. that 'the mean and median for
... ' ( \:' ':::- i, ,: ~". ~,~ ...

Op n are the same, and a sufficient condition for this is that the d.istribution of Op n is symmetric
, , ',h. \ '" 1,. ).; ~ t r , ,

about 0. As an illustrative example, consider the normal location model where f(Xi 0) is the normal

density with mean o. For this Gaussian shift model, Op n coincides with the sample mean Xn which, ','

has a pdf symmetric about 0, and hence, we conclude that within the class e of equivariant estimators,

0P,n is the closest one in the Pitman sense. For this normal mean model, 0P,n is known to be

admissible and minimax (with respect to quadratic loss) within the entire class of estimators of 0.

Thus, it is quite natural to inquire whether the Pitman Closest character of Op n remains in tact,
within the entire class of estimators of 0 (which are not necessarily translation-equivariant). The

answer is in the negative and may be verified easily with the following example due to Efron (1975).

Let f(Xi 0) be the normal density with mean 0 and unit variance. Let then
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where ~(.) is skew-symmetric (i.e., ~(-x) = -~(x), x E R) and

1. { 1/2 1/2 }
~(y) = 2 mIll y, n <P(-yn ), y;:::: 0 ,

(2.7)

(2.8)

<P(x) being the standard normal distribution function (d.f.). Since PO{OE,n = 0P,n} = Po{~(Xn) =

O} = 0, we may directly use the proof of Efron (1975) and show that in the light of (1.7), 0E n,
dominates Op n' Recall that 0E n is not a translation-equivariant estimator, and hence, it does not, ,
belong to the class e of equivariant estimators. Thus it is possible to choose an estimator outside the

class e which may dominate Op n in the sense of Pitman closeness. Nevertheless, within the class e of,
equivariant estimators, the PE Op = Xn is optimal in the light of the PCC as well.,n

As a second example, let us consider the simple exponential (location) model where

f(Xi 0) = exp{(O - x)} I(x ;:::: 0), x E R, 0 E e CR.
,-I il

Let X(l) = min {Xl' ... , Xn }l' Then X(l) is a sufficient statistic (for 0) and its pdf is given by
":.' ,

,:hn(X(1)i'O) ~ nexp{-n(X(l) - O)}I(X(l) ;:::: 0) .
,1 ':," ,'..J/ i":- II, '-1 .~. ,'-If'

Hence, using (2.4), we obt~n tba:t''I .

"I l'i it,:

(2.9)

(2.10)

(2.11)

e-

On the other hand, from Theorem 1 of ghosh and Sen (1989), we obtain that the Pitman closest

estimator (within the class of translation-equivariant estimators) is given by X(l) - n-1 log2 = 0P,n

+ n-1(1-log2). Thus, here the PE Op n is not the Pitman closest one, but can be made so by a small,
shift (_n-1(1_ log2)).

As a third example, consider the uniform distribution on [0 - ~6, 0 + ~6], 0 E e C R, 6 E R+,

for which

f(x, 0) = 6-11(0 - ~6 $ x $ °+ ~6) .

6
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Let X(l) = min{Xl' ... , Xn} and X(n) = max{X1, ... , Xn}· then (X(l)' X(n)) is (jointly) sufficient

for (0, 6), and an unbiased estimator of 0 based on this sufficient statistic is Mn = (X(l) + X(n))/2.

Also, note that Rn = (X(n) - X(l)) estimates 6 (and is translation-invariant). In this model,

P0,6{[X(1) < 0 - ~6] U [X(n) > 0 + ~6]} = 0, and the joint pdf of (X(l)' X(n)) is given by

(2.13)

As such, using (2.4), we obtain that Op = Mn. Note that Mn is translation-equivariant while Rn is,n
translation-invariant. Thus, if we consider the group G2 of affine transformations ga,b(Xl' ... , Xn) =

(a + bX1, ... , a + bXn), a E R, b E R+, and a loss function L(T, 0) = p((T - 0)/6) with an

arbitrary nonnegative p, then any equivariant estimator based on (X(l)' X(n)) is of the form Mn +

v(Rn). Moreover, the conditional pdf of Mn, given Rn , is

g(mIR) = (6 - Rr1 1(0 - ~(6 - R) $ m $ 0 + ~(6 - R)) , (2.14)

which is symmetric about 0 (a.e. Rn). Hence the uniform conditional median unbiasedness property

holds for Mn. Thus, within the class of equivariantestimators of th,e for~ Mn + v(Rn), 0P,n = Mn

is the Pitman closest estimator of O. The question may arise whether this PC characterization of Mn

holds for a larger class of estimators which may not be transl~tioq~equ~~~rii"'nt. The answer is again in

the negative. Towards this consider the one-parameter model where 6 is known (and take 6 = 1

without any loss of generality). Then, the conditional distribution ofMn,giv:.~n Rn, is uniform on [0

- ~(1 = Rn), 0 + ~(1 - Rn )], and Mn - 0 has a (conditional or unconditional) law independent of

O. Hence, we may construct an Efron-type estimator (viz. (2.7)): 0En = Mn - ~(Mn, Rn), where
,,'

in the formulation of ~(.,.), we need to use the conditional d.f. of Mn - 0, given Rn, instead of the

normal d.f. ~ in (2.8). For a non-Gaussian shift, however, even under quadratic loss, the PE may not

be admissible within the broader class of estimators which may not be equivariant, and hence, in this

sense, the picture is not too different for the PC criterion.

Let us consider another important example. Let Xl' ... , Xk (k ~ 1) be k independent r.v.'s, each

having tyhe Poisson (0) distribution. Then T = L:f:1Xi is sufficient for 0 and X = k-1T is unbiased

for O. Hence, the MLE X is an optimal estimator of 0 (with respect to quadratic loss or a convex loss

function, in general). By (1.3), we have here
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BP,n = (1(Je-k(J(JTd(J)/(1e-k(J(JTd(J)

= k-1(1yT=le-ydY) / (1yTe-ydY)

= k-1f(T+2)/f(T+l) = (T+l)/k

- -1 ( )= X + k . 2.15

Thus, the MLE eX) and the PE (X + k-1) are not the same in this simple example. Moreover, the

Poisson distribution does not belong to the location-scale family, although (J = EX. Hence,

translation-equivariance is not important for the Poisson distribution. Note that

(2.16)

while using the identity that P (J{T ~ r} = P{X~(r+l) > 2k(J}, for every r = 0, 1, 2, ... , we obtain

that

P(J{O'P,n $: (Jf:-':'P(J{Bp,n ~ ~} :5 2P(J{BP,n :5 (J} - 1
':/ ; _;_~ .. : i r;

if! .~~\~;(J~~r~c,~(J ~:,1} - 1

='2~O;{x~{ti(Jr'> 2k(J} - 1 ([s] = integer part of s)

:5"2PO{~[k(J] > [2k(J]} - 1

"2' 1< 0, as P{xm > m} < 2' 'V m ~ 1 . (2.17)

Hence, for every k( ~ 1), the PE Bp n = X + k-1 is not median unbiased for (J. Hence, even if we,
would have confined ourselves to translation-equivariant estimators of (J, the PE Bp is not the

,n
Pitman closest one within this class. As the median of T - k(J depends on the unknown (J, a simple

shift as in after (2.11) is not possible here.

In all the examples cited above, sufficiency plays a vital role. Sans sufficiency, the picture may be

quite different. As an illustration, consider the double-exponential pdf

f(Xi (J) = ~ exp{-Ei=llx - (In, x E R, (J E e c R,

8
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so that lnUI) = 2-n exp{-Ei=llXi - Oil. The MLE of 0 is the sample median (Xn, say), but the

computation of the PE Op poses serious problems, particularly when n is not small. This inherent,n
drawback of PE has been largely eliminated by taking recourse to asymptotic methods resting on some

representations of PE in terms of independent summands, and we shall consider them in the concluding

section. Nevertheless, the PE, when computable, retains the minimal risk property within the class of

equivariant estimators (with respect to quadratic loss). But in the absence of ancillarity, it may be

difficult to claim that for Un, Op nand Zn are independently distributed, and hence, (2.5) may not,
work out when Op is not a sufficient statistic. Thus, a different method of characterizing possible PC,n
characters of PE is needed in this setup. In an asymptotic setup, we shall see in Section 4 that the

BAN characterization of PE takes care of the situation in a very convenient manner.

3. GPC OF PE IN THE MULTIVARIATE CASE

The characterization of translation-equivariance and unbiasedness of PE of location parameters

remains in tact for the multivariate models as well. Moreover, the Bayes characterization in (1.5) and

sufficiency-characterizations in (2.4) extend to the multivariate case. As such, we may consider the

following PC characeterization of PE in the multivariate case:

Let ~p,n be the PE of € and consider the class e of all estimat~rs of the form lln = ~p,n + ~n,

where (i) ~ is multivariate median unbiased for € and (ii) ~P n and ~n are independently distributed.,
Then, within the class e, the PE 0P,n is the Pitman-closest estimat;or.

It may be recalled that a vector-estimator T is said to be multivariate median unbiased (MMU)

for € if for every ~, ~'(T - €) is median unbiased for 0 [see,,~en(1989)]. If the distribuiton of T is

diagonally symmetric about ~, then the multivariate median unbiasedness holds, although the converse

may not be true. Here also, if the conditional distribution of ~p,n' given ~n, is diagonally symmetric

about ~, then the PC characterization of ~P n holds without requiring ~P n and ~n to be, ,
independently distributed. The proofs of these results are very similar to the ones considered by Ghosh

and Sen (1989) and Sen (1989), and hence, are not reproduced here. In this multivariate case, in (1.7),

L(T, €) is taken as liT - €II~ for a suitable p.d.\y., and the interesting point is that the definition of

the PE in (1.3) is independent of the choice of this \y, and the PC characterization of ~p,n (within

suitable class of equivariant estimators) holds for all \y. However, the MMU property cited above may

not generally hold for a multivariate distribution. [For the multivariate location model, it holds for

the entire class of elliptically symmetric distributions.] Towards this, we consider the following simple

example. Let ~ = (Xl' ... , Xp)' have the p(~ I)-variate Poisson distribution P(€), 0 = (0 1, ... , Op)'

where

9



(3.1)

In this case, using (1.3), we have
. ,
~P n = (Xl + 1, ... , Xp + 1) ,, (3.2)

. ,.
[see (2.15) for k = 1], so that E~p n = ~ + 1; 1 = (1, ... , 1). Thus, ~P n is not unbiased for ~, and, ,
hence, the usual unbiasedness property of ~p,n does not hold here. Further, we may proceed as in

(2.17) (with k = 1) and conclude that none of the p marginal distributions of 1 + Xl' ... , 1 + Xp has

the median equal to the mean (OJ' 1 $ j $ p), so that the MMU property for ~p,n can not be true.

Thus, even here, ~ is sufficient for~, the Pitman estimator ~p,n does not possess the optimality

property either with respect to quadratic loss or the Pitman closeness criterion. Another example is the

multivariate negative exponential pdf

(3.3)

Let ~i = (Xi!' ... , Xin) be n iidrv's with the pdf (3.3). For each j (= 1, ... , p), we let X(l)' = !Jlin
~ 1$n

Xij , and then using (2.4), we have

. ,
~p,n = (X(l)l - l/n, ... , X(l)p - l/n) . (3.4)

In this case, although marginally, X(l)j - n-11og2 is the Pitman closest estimator of OJ' 1 $ j $ p, the

MMU property does not hold, and hence, even with the adjustment n-1(1-10g2)!, ~P n may not be,
the Pitman closest estima,tor of ~(within the class of translation-equivariant estimators). This example

relates to a 'nonregular' case as the range of ~ depends on~. Even in a regular case, with respect to a

quadratic loss, admissibility and minimaxity results for the classical MLE require delicate treatments in

the multivariate case. For estimating the mean vector (~) of a p-variate normal distribution, the MLE

(~n) is known to be admissible for p = 1 or 2. For p ~ 3, Stein (1956) showed that ~n is not

admissible, and there exists some other (generally, non-equivariant) estimators which dominate ~n in

quadratic loss. Such estimators are known as shrinkage or Stein-rule estimators. The past three

decades have witnessed a phenomenal growth of the literature of research on such shrinkage estimators.

In the normal case, the MLE and PE are the same, and, in general, in the presence of sufficient

statistics, one is a function of the other. In view of this intricate relationship between the PE and

MLE, we may wonder whether such Stein-rule versions exist for the PE, and, if they do so, whether

they dominate their classical forms in the light of the PCC as well. The PC dominance of Stein-rule
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estimators has only been studied in the recent past. Sen, Kubokawa and Saleh (1989) have shown that

for the multivariate normal mean estimation problem, the usual shrinkage versions of the MLE

dominates the classical MLE under PCC as well. Moreover, such a dominance holds for p ~ 2

(compared to p ~ 3, under quadratic loss). Even for p = 1, the Efron (1975) estimator in (2.7) has a

similar dominance property (over X'n). Such shrinkage versions are not translation-equivariant, and for

the multivariate normal mean problem, the MLE and PE are the same (and are translation­

eqivariant). Thus, it is clear from the above discussion that though within the class of translation­

equivariant estimators, the PE may be PC, it may not be, in general, PC within a large class of

estimators where translation-equivariance may not hold. Moreover, the PC dominance of a shrinkage

version of ~n (over the classical PE ~n), in the multivariate normal mean case, depends on some

intricate properties of noncentral chi-square distributions, and, at the present time, it is not precisely

known how, for a possibly nonnormal distribution, such PC dominance results can be extended for the

finite sample size case, even when there exists sufficient statistics. Characterization of such PC

dominance results (in the exact sense) constitutes an important research topic. As a first step towards

this, we shall show in the next section that in an asymptotic setup, because of the affinity of PE and

MLE, the distribution theory of shrinkage MLE (studied, for example; by Sen (1986b)) provides a clear

answer to this querYi in some cases, the finite sample analogues may be worked out on individual basis.

4. GPC OF PE: THE ASYMPTO'BC CASE

The formulation in (1.3) through (1.5) enables us to define a PE for a general model (where 8

need not be a location parameter). In an asymptotic setup, it is nl)t necessary to be confined only to

the location model, and the results to follow pertain to a much more general setup. Much of these

developments rests on the theor of H~jek-LeCam regular estimators [viz., H~jek (1970) and Inagaki

(1973)] for which certain (broad) conditions on the underlying pdf f(~' ~) suffice. These conditions

have been very elaborately formulated in Inagaki (1973), and hence, we omit these details by cross

reference to his paper. There is, however, a basic difference between the LeCam-H~jek-Inagakisetup

and ours, and this will add some extra generality to our formulation.

Let ~n be the MLE of~, so that

(4.1)
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We write

By (1.3) and (4.2), we have then

o = On + f ... f(~ - 0) exp{-[log~n(~n) - logen(~)]}d~ .
-P,n - f ... f exp{-[logen(~n) - logen(~)]}d~

(4.2)

(4.3)

Invoking the LeCam-H~jek-Inagaki representation for the MLE ~n, we obtain that with P~-probability

1 uniformly in ~ belonging to a compact set K, as n-oo,

1/2. -1/2 a
n ~(~)(~n, - ~) = n a~ logen(~) + Q(l) ,

where

-1/2 a
n aO logen(~) "'" N(Q, ~(~)), under PO'

.",,-' ~

and ~(~) denotes the infotIrt'ation: matriX::

(4.4)

(4.5)

(4.6)

[See, for example, Theorem 8.1 of Ibragimov and Has'minskii (1981)]. The smoothness conditions on

f(~; ~) implicit in (4.4) ensure that with P~-probability 1, uniformly in ~ E K, as n-oo,

(4.7)

while by (4.1) and an assumed convexity condition on K [c.f. Ibragimov and Has'minskii (1981, p. 83)],

outside K, (4.7) can be made O(n)lI~n - ~II, so that by (4.3),

• . -1/2
~P n = ~n + Qp(n ), as n-oo .,

12
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At this point, we may remark that in the context of (asymptotic) minimal risk property of the PE, one

needs a stronger version of (4.8) where op(n-
1
/
2

) is replaced by a stronger mode. For example, under

a quadratic error loss criterion, we need to show that

nEo{lI~p,n - ~nll~} - 0 as n-oo, uniformly in Q E K, (4.9)

and this stronger mode of convergence may call for additional regularity conditions. These have been

studied in detail in the literature; the books by Ibragimov and Has'minskii (1981) and LeCam (1986)

are especially noteworthy in this context. For our purpose, however, the weaker relation in (4.8)

suffices.

Consider now the class e of AN (asymptotically normal) estimators {Tn} of Q, such that

where

It - r 1(Q) is positive semi-definite.

(4.10)

(4.11)

The MLE ~n belongs to this class and is a BAN estimator in the sense that the corresponding It =

r 1(Q). By virtue of (4.8), the PE ~p,n is also BAN. Hence, ,by an appeal to Theorem 3.1 of Sen

(1986a), we conclude that within the class e, the PE is asymptotically Pitman closest. For this

characterization, we do not need (4.9), and hence, in general, we may need less restrictive regularity

conditions than those pertaining to the minimal risk property of the PE.

In the multi-parameter case, the class e does not include shri~kage or Stein-rule estimators, which

are not (even) asymptotically normal! Sen (1986b) has shown that the shrinkage estimation theory

applies neatly in an asymptotic setup to general MLE, even in more complex situations. By virtue of

(4.8), we are in a position to adapt the same (shrinkage estimation theory) for the PE. In this context,

we may define the unrestricted PE (UPE) as in (1.3), and this can be done in a general setup

(including the location model in (1.1) as a particular case). As contrasted to the parameter space e,
we may conceive of a restricted parameter space e* (ce). Such a restricted parameter space may be

formulated by linear restraints on Qor even by suitable nonlinear ones. Thus, in (1.3), (1.4) and (1.5),

replacing the domain e by e*, we may define the restricted PE (RPE) ~p n. As such, we may,
consider a version of the (log-) likelihood ratio test statistic:

13



With respect to the usual quadratic loss, one may then consider a shrinkage version of the PE as

~~ n = ~P n + (p - 2)Lih~p n - ~P n) ,
" "

(4.12)

(4.13)

where, we need to confine ourselves to p ~ 3. Following the line of attack of Sen (1986b) and using

(4.8), it follows that in terms of asymptotic distributional risks .(A.IllU, ~~ n dominates Up n whenever, ,
~ is "close to" e*, while for any (fixed) ~ not belonging to e*, ~~ n and ~P n are asymptotically, ,
equivalent (with respect to their ADR). In this context, the "closeness" of ~ to e* is defined by a

Pitman-type alternative:

{ * -1/2}~ E %n = ~: d(~, e ) ~ %n , (4.14)

where % « 00) is arbitrary and d(~, e*) refers to the distance between ~, defined in the usual

fashion·. Outside the domain %n, Ln becomes asymptotically large (in probability), and hence, ~~ n,
and ~P n becomes asymptotically equivalent, in probability. The ADR of ~~ n ' under (4.14), is the, ,
same as the ADR of the shrinkage MLE, treated in detail in Sen (1986b), and hence, we do not repeat

this here. It may be noted that (4.15) can be rewritten as

(4.15)

which is more analogous to the usual Stein-rule versions of the classical MLE. Also, instead of the

shrinkage factor (p - 2), some other nonnegative factor c: 0 < c < 2 (p - 2), may be used. the

choice of c = p - 2 is governed by the minimization of the ADR of U~ n on e*. Moreover, for the,
location model, when e* refers to a given pivot ~o, ~p,n is to be replaced by ~o, and instead of Ln

one may use nll~p n - ~oIlI? where In is the estimated ~(~), from the given sample. In the above
, _n

development, we have p ~ 3, and, as has been pointed out in Sen, Kubokawa and Saleh (1989), for the

Pitman closeness study, it may not be necessary to limit oneself to p ~ 3. With this in mind, we

consider the following shrinkage PE (SPE) of ~:

(4.16)
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where

o < c < (p - 1)(3p + l)j2p; p ~ 2 . (4.17)

In view of (4.4), (4.8) and the main result of Sen, Kubokawa and Saleh (1989), we can show that under

(4.14), ~pSn asymptotically dominates ~P n in the sense of Pitman closeness. For any fixed ~ (outside, ,
e*), ~pSn and ~P n are asymptotically equivalent in the PC sense., ,

It is well known that the usual Stein-rule estimator (for the multivariate normal mean) can be

improved (with respect to quadratic loss) by its positive-rule version. Sen, Kubokawa and Saleh (1989)

showed that a similar conclusion holds with respect to the Pitman closeness criterion. As such, parallel

to (4.16), we consider the following positive-rule version of the SPE:

.* -1 + " .*= ~P n + (1 - cLn ) (~p n - ~P n), "

={ if Ln ~ c,

if Ln > c,
(4.18)

(where y+ = max{O, y}). By virtue of (4.4), (4.5), (4.7) and (4.8), in the asymptotic case, we are in a

position to incorporate (2.4) through (2.7) of Sen, Kubokawa and Saleh (1989) and conclude that in the

"*S+ "*Ssense of PC too, ~P n asymptotically dominates ~P n (as well as ~P n)' This dominance is also, ,. ,
perceptible for ~ E %n (in (4.14)), and outside %n, they are equivalent (asymptotically) in the PC

sense.

It may be remarked that in this asymptotic setup, the assumed regularity conditions pertain to

the asymptotic (joint) normality of the UPE ~P n and the (noncentral) chi square distribution of the,
likelihood ratio statistic Ln. These results may not apply when either of these distributional

assumptions may not hold. We illustrate this with the following examples.

Example.L. Multivariate Cauchy distribution with the pdf:

(4.19)

where ~ E e C RP and ~ E RP. For p = 1, (4.19) reduces to the standard Cauchy pdf. A scale

factor can easily be accommodated in (4.19). Although in this case the PE ~P n of ~ is,
computationally very cumbersome (and has to be obtained by iterative procedures), the regularity
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conditions pertaining to (4.4) and (4.8) all hold. Hence, the shrinkage and positive-rule versions of the

PE discussed earlier work out well, and their asymptotic dominance in the PC sense holds.

Example 2.:. Multivariate logistic distribution with the pdf

-(x.-O.) -(p+1)
f(!; ~) = p! exp{-(! - ~)'!}{1 + Ef=1e J J} (4.20)

~ E ~ C RP and! E RP. Here also! may be replaced by a vector l' = h 1, ... , 'Yp)' where the 'Yj

represent the scale factors. The exact computation of the PE ~P n of ~ is a formidable task, especially,
for large n. However, the regularity conditions pertaining to (4.4) and (4.8) all hold, and hence, the

asymptotic theory of the shrinkage and postive-rule versions of ~P n works out well. In this case, to,
obtain the PE by iteration, it may be convenient to start with the Wilcoxon score estimators of the OJ

(1 ~ j ~ p) (which are the median of the midranges for each coordinate).

Example a.. Multivariate negative exponential pdf in (3.3). In this case, the PE ~P n of ~ is given by,
(3.4), and is easy to compute. However, here

(4.21)

and the MLE ~n does not pertain to (4.4) - (4.5); it pertains to a multivariate exponential law (with

the scaling factor n instead of the conventional n1/2). Similarly, for the likelihood ratio test statistic,

we would have a different asymptotic distribution. Hence, the proposed shrinkage and positive-rule

versions of the PE may not have the desired asymptotic dominance property, and a modified approach

is needed.

Example 4. Multivariate Poisson distribution in (3.1). The PE ~p,n is given by (3.2). Recall that (Xj
- 0j)/.JOj , j = 1, ... , p, are all asymptotically (as 0r--+oo) normally distributed with zero mean and

unit variance, and they are independent too, Hence, in this case the proposed asymptotics work out

well, when 0r--+oo, for each j = 1, ... , p. For small values of OJ' a different approach may be more

appropriate.
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